Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
25 result(s) for "Moteki, N."
Sort by:
Wet removal of black carbon in Asian outflow: Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign
The Aerosol Radiative Forcing in East Asia (A‐FORCE) aircraft campaign was conducted over East Asia in March–April 2009. During the A‐FORCE campaign, 120 vertical profiles of black carbon (BC) and carbon monoxide (CO) were obtained in the planetary boundary layer (PBL) and the free troposphere. This study examines the wet removal of BC in Asian outflow using the A‐FORCE data. The concentrations of BC and CO were greatly enhanced in air parcels sampled at 3–6 km in altitude over the Yellow Sea on 30 March 2009, associated with upward transport due to a cyclone with modest amounts of precipitation over northern China. In contrast, high CO concentrations without substantial enhancements of BC concentrations were observed in air parcels sampled at 5–6 km over the East China Sea on 23 April 2009, caused by uplifting due to cumulus convection with large amounts of precipitation over central China. The transport efficiency of BC (TEBC, namely the fraction of BC particles not removed during transport) in air parcels sampled above 2 km during the entire A‐FORCE period decreased primarily with the increase in the precipitation amount that air parcels experienced during vertical transport, although their correlation was modest (r2 = 0.43). TEBC also depended on the altitude to which air parcels were transported from the PBL and the latitude where they were uplifted locally over source regions. The median values of TEBC for air parcels originating from northern China (north of 33°N) and sampled at 2–4 km and 4–9 km levels were 86% and 49%, respectively, during the A‐FORCE period. These median values were systematically greater than the corresponding median values (69% and 32%, respectively) for air parcels originating from southern China (south of 33°N). Use of the A‐FORCE data set will contribute to the reduction of large uncertainties in wet removal process of BC in global‐ and regional‐scale models. Key Points Aircraft obtained 120 vertical profiles of BC and CO over East Asia Wet removal of BC was greater for air originating from south than north China Removal of BC depended on amount of precipitation experienced during transport
Size dependence of wet removal of black carbon aerosols during transport from the boundary layer to the free troposphere
Size distributions of black carbon (BC) measured by aircraft over East Asia in spring 2009 were highly correlated with BC transport efficiency in air parcels uplifted from the planetary boundary layer to the free troposphere. The average single‐particle BC mass decreased with decreasing transport efficiency, which suggests that aerosols containing larger BC mass were removed more efficiently. This is the first successful observation of the size‐dependent wet removal of aerosols, qualitatively consistent with the Köhler theory. The size distribution of BC uplifted to the free troposphere with high efficiency was similar to the size distribution of BC in the planetary boundary layer. Conversely, the size distribution of BC uplifted with low efficiency was similar to that of background air in the free troposphere. We conclude that wet removal during upward transport is important in controlling the size distribution of BC in the free troposphere. Key Points Wet removal efficiency of aerosols tightly correlates their particle size Wet removal process is a regulator of the size of tropospheric aerosols We use chemically inert black carbon aerosols to show above propositions
Seasonal variation of the transport of black carbon aerosol from the Asian continent to the Arctic during the ARCTAS aircraft campaign
Extensive measurements of black carbon (BC) aerosol were conducted in and near the North American Arctic during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) aircraft campaign in April and June–July 2008. We identify the pathways and mechanisms of transport of BC to the Arctic from the Asian continent using these data. The concentration, transport efficiency, and measured altitude of BC over the North American Arctic were highly dependent on season and origin of air parcels, e.g., biomass burning (BB) in Russia (Russian BB) and anthropogenic (AN) in East Asia (Asian AN). Russian BB air was mainly measured in the middle troposphere and caused maximum BC concentrations at this altitude in spring. The median BC concentration and transport efficiency of the Russian BB air were 270 ng m−3 (at STP) and 80% in spring and 20 ng m−3 and 4% in summer, respectively. Asian AN air was measured most frequently in the upper troposphere, with median values of 20 ng m−3 and 13% in spring and 5 ng m−3 and 0.8% in summer. These distinct differences are explained by differences in the transport mechanisms and accumulated precipitation along trajectories (APT), which is a measure of wet removal processes during transport. The transport of Russian BB air to the Arctic was nearly isentropic with slow ascent (low APT), while Asian AN air underwent strong uplift associated with warm conveyor belts (high APT). The APT values in summer were much larger than those in spring due to the increase in humidity in summer. These results show that the impact of BC emitted from AN sources in East Asia on the Arctic was very limited in both spring and summer. The BB emissions in Russia in spring are demonstrated to be the most important sources of BC transported to the North American Arctic.
Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations
Atmospheric black carbon (BC) absorbs solar radiation, and exacerbates global warming through exerting positive radiative forcing (RF). However, the contribution of BC to ongoing changes in global climate is under debate. Anthropogenic BC emissions, and the resulting distribution of BC concentration, are highly uncertain. In particular, long-range transport and processes affecting BC atmospheric lifetime are poorly understood. Here we discuss whether recent assessments may have overestimated present-day BC radiative forcing in remote regions. We compare vertical profiles of BC concentration from four recent aircraft measurement campaigns to simulations by 13 aerosol models participating in the AeroCom Phase II intercomparison. An atmospheric lifetime of BC of less than 5 days is shown to be essential for reproducing observations in remote ocean regions, in line with other recent studies. Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in AeroCom Phase II median direct BC forcing, from fossil fuel and biofuel burning, over the industrial era. The sensitivity of modelled forcing to BC vertical profile and lifetime highlights an urgent need for further flight campaigns, close to sources and in remote regions, to provide improved quantification of BC effects for use in climate policy.
Emissions of black carbon in East Asia estimated from observations at a remote site in the East China Sea
East Asia, including China, is the largest source of anthropogenic black carbon (BC). In estimating the BC emissions from this region, it is advantageous to use BC mass concentrations measured at remote locations on the ocean appropriately distant from the large sources because of spatially uniform distributions through mixing during transport. We made continuous measurements of the BC mass concentration with an accuracy of about 10% at Cape Hedo on Okinawa Island, Japan, in the East China Sea, from February 2008 to May 2009, simultaneously with carbon monoxide (CO). The seasonal median BC concentrations at Hedo were highest (0.23–0.31 μg m−3 at standard temperature and pressure) in winter and spring when plumes from China, predominantly northern China north of 33°N, were often transported to the site. A three‐dimensional chemical transport model is used to calculate the mass concentration of BC using the annual mean emission inventory of Zhang et al. (2009) for the base year 2006. The model results and the observed BC‐CO correlation are used to exclude the BC data substantially influenced by wet deposition. The calculated BC mass concentrations agree with those observed to within about 30% in air strongly affected by emissions in China for winter and spring on average. We estimate the annually averaged BC emission flux over the whole of China to be 1.92 Tg yr−1 with an uncertainty of about 40%. This value is very close to the value of 1.81 Tg yr−1 estimated by Zhang et al. (2009). The overall uncertainty of 40% of the present estimate is a substantial improvement in the uncertainty (208%) of the bottom‐up inventory. Key Points CMAQ model reproduced the temporal variations of BC in the Asian outflows Our estimate of BC emissions from China is close to that of Zhang et al. [2009] The uncertainty of the estimated BC emissions is 54%, a great improvement
Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008
Reliable assessment of the impact of aerosols emitted from boreal forest fires on the Arctic climate necessitates improved understanding of emissions and the microphysical properties of carbonaceous (black carbon (BC) and organic aerosols (OA)) and inorganic aerosols. The size distributions of BC were measured by an SP2 based on the laser-induced incandescence technique on board the DC-8 aircraft during the NASA ARCTAS campaign. Aircraft sampling was made in fresh plumes strongly impacted by wildfires in North America (Canada and California) in summer 2008 and in those transported from Asia (Siberia in Russia and Kazakhstan) in spring 2008. We extracted biomass burning plumes using particle and tracer (CO, CH3CN, and CH2Cl2) data. OA constituted the dominant fraction of aerosols mass in the submicron range. The large majority of the emitted particles did not contain BC. We related the combustion phase of the fire as represented by the modified combustion efficiency (MCE) to the emission ratios between BC and other species. In particular, we derived the average emission ratios of BC/CO = 2.3 +/- 2.2 and 8.5 +/- 5.4 ng/cu m/ppbv for BB in North America and Asia, respectively. The difference in the BC/CO emission ratios is likely due to the difference in MCE. The count median diameters and geometric standard deviations of the lognormal size distribution of BC in the BB plumes were 136-141 nm and 1.32-1.36, respectively, and depended little on MCE. These BC particles were thickly coated, with shell/core ratios of 1.3-1.6. These parameters can be used directly for improving model estimates of the impact of BB in the Arctic.
Emission characteristics of black carbon in anthropogenic and biomass burning plumes over California during ARCTAS-CARB 2008
The impact of aerosols on regional air quality and climate necessitates improved understanding of their emission and microphysical properties. The size distributions of black carbon (BC) and light scattering particles (LSP) were measured with a single particle soot photometer on board the NASA DC‐8 aircraft during the ARCTAS mission 2008. Air sampling was made in the air plumes of both urban and forest fire emissions over California during the CARB (California Air Resources Board) phase of the mission. A total of eleven plumes were identified using SO2 and CH3CN tracers for fossil fuel (FF) combustion and biomass burning (BB), respectively. The enhancements of BC and LSP in BB plumes were significantly higher compared to those in FF plumes. The average mass concentration of BC in BB plumes was more than twice that in FF plumes. Except for the BC/CO ratio, distinct emission ratios of BC/CO2, BC/CH3CN, CH3CN/CO, and CO/CO2 were observed in the plumes from the two sources. Similarly, the microphysical properties of BC and LSP also showed distinct behaviors. The BC count median diameter (CMD) of 115 ± 5 nm in FF plumes was smaller compared to 141 ± 9 nm in the BB plumes. BC aerosols were thickly coated in BB plumes, the average shell/core ratios were 1.47 and 1.24 in BB and FF plumes, respectively. In the total mass of submicron aerosols, organic aerosols constituted about 67% in the FF plumes and 84% in BB plumes. The contribution of sulfate was also significant in the FF plumes. Key Points Distributions of black carbon over California during NASA ARCTAS‐CARB mission Emission ratios of aerosols from anthropogenic and biomass burning sources Study of microphysical properties of aerosols emitted from different sources
Aging of black carbon in outflow from anthropogenic sources using a mixing state resolved model: Model development and evaluation
The mixing state of black carbon (BC) aerosols, namely, the degree to which BC particles are coated with other aerosol components, has been recognized as important for evaluating aerosol radiative forcing. In order to resolve the BC mixing state explicitly in model simulations, a two‐dimensional aerosol representation, in which aerosols are given for individual particle diameters and BC mass fractions, is introduced. This representation was incorporated into an aerosol module, the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID), and a new box model, MADRID‐BC, was developed. MADRID‐BC can accurately simulate changes in the entire BC mixing state resulting from condensation/evaporation processes. Aircraft observations conducted in March 2004 show that the mass fraction of thickly coated BC particles increased in air horizontally transported out from an urban area in Japan over the ocean. MADRID‐BC generally reproduces this feature well when observed bulk aerosol concentrations are used as constraints. The model simulations in this particular case show that for particles with BC core diameters of 100–200 nm, the particle diameters, including both core and coating materials, had already increased by a factor of 1.6 on average when they left the source region and by as large as a factor of 1.9 of the BC core diameters after their transport over the ocean for a half day. The model simulations also show that 58% of the total condensed mass was partitioned onto BC‐free particles during transport, indicating their importance for the BC mixing state. Although the model simulations are applied to a limited number of the observations in this study, they clearly show the time evolution of the coating thicknesses of BC‐containing particles, which is necessary for calculating aerosol optical properties and cloud condensation nuclei activities.
Measurements of regional-scale aerosol impacts on cloud microphysics over the East China Sea: Possible influences of warm sea surface temperature over the Kuroshio ocean current
Cloud microphysical properties and aerosol concentrations were measured aboard an aircraft over the East China Sea and Yellow Sea in April 2009 during the Aerosol Radiative Forcing in East Asia (A‐FORCE) experiment. We sampled stratocumulus and shallow cumulus clouds over the ocean in 9 cases during 7 flights 500–900 km off the east coast of Mainland China. In this study we report aerosol impacts on cloud microphysical properties by focusing on regional characteristics of two key parameters, namely updraft velocity and aerosol size distribution. First, we show that the cloud droplet number concentration (highest 5%, Nc_max) correlates well with the accumulation‐mode aerosol number concentration (Na) below the clouds. We then show that Nc_maxcorrelates partly with near‐surface stratification evaluated as the difference between the sea surface temperature (SST) and 950‐hPa temperature (SST − T950). Cold air advection from China to the East China Sea was found to bring not only a large number of aerosols but also a dry and cold air mass that destabilized the atmospheric boundary layer, especially over the warm Kuroshio ocean current. Over this high‐SST region, greater updraft velocities and hence greater Nc_maxlikely resulted. We hypothesize that the low‐level static stability determined by SST and regional‐scale airflow modulates both the cloud microphysics (aerosol impact on clouds) and macro‐structure of clouds (cloud base and top altitudes, hence cloud liquid water path). Second, we show that not only higher aerosol loading in terms of total aerosol number concentration (NCN, D > 10 nm) but also larger aerosol mode diameters likely contributed to high Ncduring A‐FORCE. The mean Nc of 650 ± 240 cm−3was more than a factor of 2 larger than the global average for clouds influenced by continental sources. A crude estimate of the aerosol‐induced cloud albedo radiative forcing is also given. Key Points Cloud droplet concentration was quite high over East Asia due to aerosol Cloud droplet concentration partly correlates with near‐surface stratification Both aerosol concentration and mode diameter are large over East Asia
Absorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns
In the spring of 2008 NASA and NOAA funded the ARCTAS and ARCPAC field campaigns as contributions to POLARCAT, a core IPY activity. During the campaigns the NASA DC-8, P-3B and NOAA WP-3D aircraft conducted over 160 h of in-situ sampling between 0.1 and 12 km throughout the Western Arctic north of 55° N (i.e. Alaska to Greenland). All aircraft were equipped with multiple wavelength measurements of aerosol optics, trace gas and aerosol chemistry measurements, as well as direct measurements of the aerosol size distributions and black carbon mass. Late April of 2008 proved to be exceptional in terms of Asian biomass burning emissions transported to the Western Arctic. Though these smoke plumes account for only 11–14 % of the samples within the Western Arctic domain, they account for 42–47 % of the total burden of black carbon. Dust was also commonly observed but only contributes to 4–12 % and 3–8 % of total light absorption at 470 and 530 nm wavelengths above 6 km. Below 6 km, light absorption by carbonaceous aerosol derived from urban/industrial and biomass burning emissions account for 97–99 % of total light absorption by aerosol. Stratifying the data to reduce the influence of dust allows us to determine mass absorption efficiencies for black carbon of 11.2±0.8, 9.5±0.6 and 7.4±0.7 m2 g−1 at 470, 530 and 660 nm wavelengths. These estimates are consistent with 35–80 % enhancements in 530 nm absorption due to clear or slightly absorbing coatings of pure black carbon particulate. Assuming a 1/λ wavelength dependence for BC absorption, and assuming that refractory aerosol (420 °C, τ = 0.1 s) in low-dust samples is dominated by brown carbon, we derive mass absorption efficiencies for brown carbon of 0.83±0.15 and 0.27±0.08 m2 g−1 at 470 and 530 nm wavelengths. Estimates for the mass absorption efficiencies of Asian dust are 0.034 m2 g−1 and 0.017 m2 g−1. However the absorption efficiency estimates for dust are highly uncertain due to the limitations imposed by PSAP instrument noise. In-situ ARCTAS/ARCPAC measurements during the IPY provide valuable constraints for absorbing aerosol over the Western Arctic, species which are currently poorly simulated over a region that is critically under-sampled.