Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
24 result(s) for "Mott, G Adam"
Sort by:
A species-wide inventory of receptor-like kinases in Arabidopsis thaliana
Background The receptor-like kinases (RLKs) are the largest family of proteins in plants. Characterized members play critical roles in diverse processes from growth to immunity, and yet the majority do not have a known function. Assigning function to RLKs poses a significant challenge due to the specificity of ligand recognition and because of the often pleiotropic or redundant functions RLKs possess. These problems inhibit the important work of identifying stress-related receptors that may be targets for crop improvement. Identification of stress-related evolutionary signatures can provide a way to expedite the discovery of candidate receptors. Pan-genome analysis can be used to compare naturally occurring variants within a species to identify evolutionary signatures that may otherwise be hidden by using only a single ecotype. Results Using 146 ecotypes of Arabidopsis, we generated a pan-RLKome to investigate species-wide natural diversity and identify structural variation and other patterns indicative of stress adaptation. We discovered significant presence/absence variation across a subset of RLKs, most of which occurred in specific subclades nested within receptor subfamilies. These same subclades tended to have arisen through proximal or tandem duplication, both of which are common mechanisms during the expansion of stress-related genes. We also identified strong positive selection across many gene subfamilies and a bias of positive selection in the extracellular domains of receptors. This suggests escape from adaptive conflict within the extracellular domain may have played a large role in the evolution and adaptation of the RLKs. Conclusion Taken together, this work represents an excellent tool for the comparative study of RLKs and has identified lineages and subclades within RLK subfamilies with the hallmarks of involvement in stress adaptation.
An extracellular network of Arabidopsis leucine-rich repeat receptor kinases
A high-throughput assay is used to analyse 40,000 potential extracellular domain interactions of a large family of plant cell surface receptors (LRR-RKs) and provide a cell surface interaction network for these receptors. A network of cell surface interactions Cell surface receptors mediate communication between the interior of a cell and its external environment. Specifically, the extracellular domains (ECDs) of such receptors interact with external molecules. It is less clear how interactions between ECDs of different receptors help to form receptor complexes for signal transduction. Youssef Belkhadir and colleagues investigate systems-level organization of leucine-rich repeat receptor kinases (LRR-RKs)—a large family of plant cell surface receptors with roles in processes including plant defence and development. The authors use a high-throughput assay to study 40,000 potential ECD interactions. They develop a cell surface interaction network for these receptors and study its dynamics. The team demonstrate the power of this network for detecting biologically relevant interactions by predicting and validating the function of previously uncharacterized LRR-RKs in plant growth and immunity. The cells of multicellular organisms receive extracellular signals using surface receptors. The extracellular domains (ECDs) of cell surface receptors function as interaction platforms, and as regulatory modules of receptor activation 1 , 2 . Understanding how interactions between ECDs produce signal-competent receptor complexes is challenging because of their low biochemical tractability 3 , 4 . In plants, the discovery of ECD interactions is complicated by the massive expansion of receptor families, which creates tremendous potential for changeover in receptor interactions 5 . The largest of these families in Arabidopsis thaliana consists of 225 evolutionarily related leucine-rich repeat receptor kinases (LRR-RKs) 5 , which function in the sensing of microorganisms, cell expansion, stomata development and stem-cell maintenance 6 , 7 , 8 , 9 . Although the principles that govern LRR-RK signalling activation are emerging 1 , 10 , the systems-level organization of this family of proteins is unknown. Here, to address this, we investigated 40,000 potential ECD interactions using a sensitized high-throughput interaction assay 3 , and produced an LRR-based cell surface interaction network (CSI LRR ) that consists of 567 interactions. To demonstrate the power of CSI LRR for detecting biologically relevant interactions, we predicted and validated the functions of uncharacterized LRR-RKs in plant growth and immunity. In addition, we show that CSI LRR operates as a unified regulatory network in which the LRR-RKs most crucial for its overall structure are required to prevent the aberrant signalling of receptors that are several network-steps away. Thus, plants have evolved LRR-RK networks to process extracellular signals into carefully balanced responses.
Immunomodulation by the Pseudomonas syringae HopZ Type III Effector Family in Arabidopsis
Pseudomonas syringae employs a type III secretion system to inject 20-30 different type III effector (T3SE) proteins into plant host cells. A major role of T3SEs is to suppress plant immune responses and promote bacterial infection. The YopJ/HopZ acetyltransferases are a superfamily of T3SEs found in both plant and animal pathogenic bacteria. In P. syringae, this superfamily includes the evolutionarily diverse HopZ1, HopZ2 and HopZ3 alleles. To investigate the roles of the HopZ family in immunomodulation, we generated dexamethasone-inducible T3SE transgenic lines of Arabidopsis for HopZ family members and characterized them for immune suppression phenotypes. We show that all of the HopZ family members can actively suppress various facets of Arabidopsis immunity in a catalytic residue-dependent manner. HopZ family members can differentially suppress the activation of mitogen-activated protein (MAP) kinase cascades or the production of reactive oxygen species, whereas all members can promote the growth of non-virulent P. syringae. Localization studies show that four of the HopZ family members containing predicted myristoylation sites are localized to the vicinity of the plasma membrane while HopZ3 which lacks the myristoylation site is at least partially nuclear localized, suggesting diversification of immunosuppressive mechanisms. Overall, we demonstrate that despite significant evolutionary diversification, all HopZ family members can suppress immunity in Arabidopsis.
Differential expansion and retention patterns of LRR‐RLK genes across plant evolution
To maximize overall fitness, plants must accurately respond to a host of growth, developmental, and environmental signals throughout their life. Many of these internal and external signals are perceived by the leucine‐rich repeat receptor‐like kinases, which play roles in regulating growth, development, and immunity. This largest family of receptor kinases in plants can be divided into subfamilies based on the conservation of the kinase domain, which demonstrates that shared evolutionary history often indicates shared molecular function. Here we investigate the evolutionary history of this family across the evolution of 112 plant species. We identify lineage‐specific expansions of the malectin‐domain containing subfamily LRR subfamily I primarily in the Brassicales and bryophytes. Most other plant lineages instead show a large expansion in LRR subfamily XII, which in Arabidopsis is known to contain key receptors in pathogen perception. This striking asymmetric expansion may reveal a dichotomy in the evolutionary history and adaptation strategies employed by plants. A greater understanding of the evolutionary pressures and adaptation strategies acting on members of this receptor family offers a way to improve functional predictions for orphan receptors and simplify the identification of novel stress‐related receptors.
Targeting Cattle-Borne Zoonoses and Cattle Pathogens Using a Novel Trypanosomatid-Based Delivery System
Trypanosomatid parasites are notorious for the human diseases they cause throughout Africa and South America. However, non-pathogenic trypanosomatids are also found worldwide, infecting a wide range of hosts. One example is Trypanosoma (Megatrypanum) theileri, a ubiquitous protozoan commensal of bovids, which is distributed globally. Exploiting knowledge of pathogenic trypanosomatids, we have developed Trypanosoma theileri as a novel vehicle to deliver vaccine antigens and other proteins to cattle. Conditions for the growth and transfection of T. theileri have been optimised and expressed heterologous proteins targeted for secretion or specific localisation at the cell interior or surface using trafficking signals from Trypanosoma brucei. In cattle, the engineered vehicle could establish in the context of a pre-existing natural T. theileri population, was maintained long-term and generated specific immune responses to an expressed Babesia antigen at protective levels. Building on several decades of basic research into trypanosomatid pathogens, Trypanosoma theileri offers significant potential to target multiple infections, including major cattle-borne zoonoses such as Escherichia coli, Salmonella spp., Brucella abortus and Mycobacterium spp. It also has the potential to deliver therapeutics to cattle, including the lytic factor that protects humans from cattle trypanosomiasis. This could alleviate poverty by protecting indigenous African cattle from African trypanosomiasis.
A Soluble Factor from Trypanosoma cruzi Inhibits Transforming Growth Factor-ß-Induced MAP Kinase Activation and Gene Expression in Dermal Fibroblasts
The protozoan parasite Trypanosoma cruzi, which causes human Chagas' disease, exerts a variety of effects on host extracellular matrix (ECM) including proteolytic degradation of collagens and dampening of ECM gene expression. Exposure of primary human dermal fibroblasts to live infective T. cruzi trypomastigotes or their shed/secreted products results in a rapid down-regulation of the fibrogenic genes collagenIα1, fibronectin and connective tissue growth factor (CTGF/CCN2). Here we demonstrate the ability of a secreted/released T. cruzi factor to antagonize ctgf/ccn2 expression in dermal fibroblasts in response to TGF-ß, lysophosphatidic acid or serum, where agonist-induced phosphorylation of the mitogen-activated protein (MAP) kinases Erk1/2, p38 and JNK was also inhibited. Global analysis of gene expression in dermal fibroblasts identified a discrete subset of TGF-ß-inducible genes involved in cell proliferation, wound repair, and immune regulation that are inhibited by T. cruzi secreted/released factors, where the genes exhibiting the highest sensitivity to T. cruzi are known to be regulated by MAP kinase-activated transcription factors. Consistent with this observation, the Ets-family transcription factor binding site in the proximal promoter region of the ctgf/ccn2 gene (-91 bp to -84 bp) was shown to be required for T. cruzi-mediated down-regulation of ctgf/ccn2 reporter expression. The cumulative data suggest a model in which T. cruzi-derived molecules secreted/released early in the infective process dampen MAP kinase signaling and the activation of transcription factors that regulate expression of fibroblast genes involved in wound repair and tissue remodelling, including ctgf/ccn2. These findings have broader implications for local modulation of ECM synthesis/remodelling by T. cruzi during the early establishment of infection in the mammalian host and highlight the potential for pathogen-derived molecules to be exploited as tools to modulate the fibrogenic response.
Genomic screens identify a new phytobacterial microbe-associated molecular pattern and the cognate Arabidopsis receptor-like kinase that mediates its immune elicitation
Background The recognition of microbe-associated molecular patterns during infection is central to the mounting of an effective immune response. In spite of their importance, it remains difficult to identify these molecules and the host receptors required for their perception, ultimately limiting our understanding of the role of these molecules in the evolution of host-pathogen relationships. Results We employ a comparative genomics screen to identify six new immune eliciting peptides from the phytopathogenic bacterium Pseudomonas syringae . We then perform a reverse genetic screen to identify Arabidopsis thalian a leucine-rich repeat receptor-like kinases required for the recognition of these elicitors. We test the six elicitors on 187 receptor-like kinase knock-down insertion lines using a high-throughput peroxidase-based immune assay and identify multiple lines that show decreased immune responses to specific peptides. From this primary screen data, we focused on the interaction between the xup25 peptide from a bacterial xanthine/uracil permease and the Arabidopsis receptor-like kinase xanthine/uracil permease sensing 1; a family XII protein closely related to two well-characterized receptor-like kinases. We show that xup25 treatment increases pathogenesis-related gene induction, callose deposition, seedling growth inhibition, and resistance to virulent bacteria, all in a xanthine/uracil permease sensing 1-dependent manner. Finally, we show that this kinase-like receptor can bind the xup25 peptide directly. These results identify xup25 as a P. syringae microbe-associated molecular pattern and xanthine/uracil permease sensing 1 as a receptor-like kinase that detects the xup25 epitope to activate immune responses. Conclusions The present study demonstrates an efficient method to identify immune elicitors and the plant receptors responsible for their perception. Further exploration of these molecules will increase our understanding of plant-pathogen interactions and the basis for host specificity.
Map of physical interactions between extracellular domains of Arabidopsis leucine-rich repeat receptor kinases
Plants use surface receptors to perceive information about many aspects of their local environment. These receptors physically interact to form both steady state and signalling competent complexes. The signalling events downstream of receptor activation impact both plant developmental and immune responses. Here, we present a comprehensive study of the physical interactions between the extracellular domains of leucine-rich repeat receptor kinases (LRR-RKs) in Arabidopsis. Using a sensitized assay, we tested reciprocal interactions among 200 of the 225 Arabidopsis LRR-RKs for a total search space of 40,000 interactions. Applying a stringent statistical cut-off and requiring that interactions performed well in both bait-prey and prey-bait orientations resulted in a high-confidence set of 567 bidirectional interactions. Additionally, we identified a total of 2,586 unidirectional interactions, which passed our stringent statistical cut-off in only one orientation. These datasets will guide further investigation into the regulatory roles of LRR-RKs in plant developmental and immune signalling decisions.
Peptides and small molecules of the plant-pathogen apoplastic arena
Plants reside within an environment rich in potential pathogens. Survival in the presence of such threats requires both effective perception of, and appropriate responses to, pathogenic attack. While plants lack an adaptive immune system, they have a highly developed and responsive innate immune system able to detect and inhibit the growth of the vast majority of potential pathogens. Many of the critical interactions that characterize the relationship between plants and pathogens are played out in the intercellular apoplastic space. The initial perception of pathogen invasion is often achieved through specific plant receptor-like kinases that recognize conserved molecular patterns presented by the pathogen or respond to the molecular debris caused by cellular damage. The perception of either microbial or damage signals by these receptors initiates a response that includes the production of peptides and small molecules to enhance cellular integrity and inhibit pathogen growth. In this review, we discuss the roles of apoplastic peptides and small molecules in modulating plant-pathogen interactions.