Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
731
result(s) for
"Mottola, S."
Sort by:
Dawn at Vesta: Testing the Protoplanetary Paradigm
2012
The Dawn spacecraft targeted 4 Vesta, believed to be a remnant intact protoplanet from the earliest epoch of solar system formation, based on analyses of howardite-eucrite-diogenite (HED) meteorites that indicate a differentiated parent body. Dawn observations reveal a giant basin at Vesta's south pole, whose excavation was sufficient to produce Vesta-family asteroids (Vestoids) and HED meteorites. The spatially resolved mineralogy of the surface reflects the composition of the HED meteorites, confirming the formation of Vesta's crust by melting of a chondritic parent body. Vesta's mass, volume, and gravitational field are consistent with a core having an average radius of 107 to 113 kilometers, indicating sufficient internal melting to segregate iron. Dawn's results confirm predictions that Vesta differentiated and support its identification as the parent body of the HEDs.
Journal Article
The Violent Collisional History of Asteroid 4 Vesta
2012
Vesta is a large differentiated rocky body in the main asteroid belt that accreted within the first few million years after the formation of the earliest solar system solids. The Dawn spacecraft extensively imaged Vesta's surface, revealing a collision-dominated history. Results show that Vesta's cratering record has a strong north-south dichotomy. Vesta's northern heavily cratered terrains retain much of their earliest history. The southern hemisphere was reset, however, by two major collisions in more recent times. We estimate that the youngest of these impact structures, about 500 kilometers across, formed about 1 billion years ago, in agreement with estimates of Vesta asteroid family age based on dynamical and collisional constraints, supporting the notion that the Vesta asteroid family was formed during this event.
Journal Article
Surface Morphology of Comets and Associated Evolutionary Processes: A Review of Rosetta’s Observations of 67P/Churyumov–Gerasimenko
by
Herny, C.
,
Otto, K.
,
Groussin, O.
in
Aerospace Technology and Astronautics
,
Astrophysics
,
Astrophysics and Astroparticles
2019
Comets can be regarded as active planetary bodies because they display evidence for nearly all fundamental geological processes, which include impact cratering, tectonism, and erosion. Comets also display sublimation-driven outgassing, which is comparable to volcanism on larger planetary bodies in that it provides a conduit for delivering materials from the interior to the surface. However, in the domain of active geological bodies, comets occupy a special niche since their geologic activity is almost exclusively driven by externally supplied energy (i.e. solar energy) as opposed to an internal heat source, which makes them “seasonally-active” geological bodies. During their active phase approaching the Sun, comets also develop a transient atmosphere that interacts with the surface and contributes to its evolution, particularly by transporting materials across the surface. Variations in solar energy input on diurnal and seasonal scale cause buildup of thermal stresses within consolidated materials that lead to weathering through fracturing, and eventually mass-wasting. The commonly irregular shapes of comets also play a major role in their evolution by leading to (1) non-uniform gravitational forces that affect material movement across the surface, and (2) spatially heterogeneous outgassing patterns that affect the comet’s orbital dynamics and lead to tidal stresses that can further fracture the nucleus. In this chapter, we review the surface morphology of comet 67P/Churyumov–Gerasimenko as well as its seasonal evolution as viewed by Rosetta from August 2014 to September 2016, their link to various processes, and the forces that drive surface evolution.
Journal Article
The structure of the regolith on 67P/Churyumov-Gerasimenko from ROLIS descent imaging
2015
The structure of the upper layer of a comet is a product of its surface activity. The Rosetta Lander Imaging System (ROLIS) on board Philae acquired close-range images of the Agilkia site during its descent onto comet 67P/Churyumov-Gerasimenko. These images reveal a photometrically uniform surface covered by regolith composed of debris and blocks ranging in size from centimeters to 5 meters. At the highest resolution of 1 centimeter per pixel, the surface appears granular, with no apparent deposits of unresolved sand-sized particles. The thickness of the regolith varies across the imaged field from 0 to 1 to 2 meters. The presence of aeolian-like features resembling wind tails hints at regolith mobilization and erosion processes. Modeling suggests that abrasion driven by airfall-induced particle “splashing” is responsible for the observed formations.
Journal Article
Dawn arrives at Ceres: Exploration of a small, volatile-rich world
2016
On 6 March 2015, Dawn arrived at Ceres to find a dark, desiccated surface punctuated by small, bright areas. Parts of Ceres' surface are heavily cratered, but the largest expected craters are absent. Ceres appears gravitationally relaxed at only the longest wavelengths, implying a mechanically strong lithosphere with a weaker deep interior. Ceres' dry exterior displays hydroxylated silicates, including ammoniated clays of endogenous origin. The possibility of abundant volatiles at depth is supported by geomorphologie features such as flat crater floors with pits, lobate flows of materials, and a singular mountain that appears to be an extrusive cryovolcanic dome. On one occasion, Ceres temporarily interacted with the solar wind, producing a bow shock accelerating electrons to energies of tens of kilovolts.
Journal Article
67P/Churyumov-Gerasimenko surface properties as derived from CIVA panoramic images
2015
The structure and composition of cometary constituents, down to their microscopic scale, are critical witnesses of the processes and ingredients that drove the formation and evolution of planetary bodies toward their present diversity. On board Rosetta’s lander Philae, the Comet Infrared and Visible Analyser (CIVA) experiment took a series of images to characterize the surface materials surrounding the lander on comet 67P/Churyumov-Gerasimenko. Images were collected twice: just after touchdown, and after Philae finally came to rest, where it acquired a full panorama. These images reveal a fractured surface with complex structure and a variety of grain scales and albedos, possibly constituting pristine cometary material.
Journal Article
The Terminal Tracking Camera System on the NASA Lucy Trojan Asteroid Discovery Mission
by
Mottola, S.
,
Shamah, J.
,
Zhao, Y.
in
Aerospace Technology and Astronautics
,
Asteroids
,
Astronomical instruments
2023
The Terminal Tracking Camera system (TTCam) on the NASA
Lucy
Trojan asteroid Discovery mission consists of a pair of block redundant cameras and their associated electronics that are mounted on the spacecraft’s Instrument Pointing Platform and co-boresighted with the rest of the mission’s science payload instruments. The primary function of the TTCams is as a navigation system designed to provide an autonomous onboard late pre-encounter update of the location of each asteroid flyby target relative to the spacecraft. However, once the terminal tracking function is complete, the TTCam system will also provide 11.0°×8.2° field of view broadband (425-675 nm) images during the close approach phase of each asteroid flyby that will be used for scientific analyses like shape modeling and assessment of each target’s geology and topography. This paper provides an overview of the TTCam cameras and electronics, the science-focused requirements that the system is designed to meet, pointers to pre-flight calibration and in-flight calibration details for the cameras, as well as a high-level summary of the kinds of science that these images will enable for the mission.
Journal Article
Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu
2019
C-type asteroids are among the most pristine objects in the Solar System, but little is known about their interior structure and surface properties. Telescopic thermal infrared observations have so far been interpreted in terms of a regolith-covered surface with low thermal conductivity and particle sizes in the centimetre range. This includes observations of C-type asteroid (162173) Ryugu1–3. However, on arrival of the Hayabusa2 spacecraft at Ryugu, a regolith cover of sand- to pebble-sized particles was found to be absent4,5 (R.J. et al., manuscript in preparation). Rather, the surface is largely covered by cobbles and boulders, seemingly incompatible with the remote-sensing infrared observations. Here we report on in situ thermal infrared observations of a boulder on the C-type asteroid Ryugu. We found that the boulder’s thermal inertia was much lower than anticipated based on laboratory measurements of meteorites, and that a surface covered by such low-conductivity boulders would be consistent with remote-sensing observations. Our results furthermore indicate high boulder porosities as well as a low tensile strength in the few hundred kilopascal range. The predicted low tensile strength confirms the suspected observational bias6 in our meteorite collections, as such asteroidal material would be too frail to survive atmospheric entry7.The MASCOT lander observed a boulder on the surface of asteroid Ryugu up close. The boulder’s low thermal inertia is closer to fine regolith or comets rather than stony boulders, indicating high porosity and low tensile strength. Orbit measurements confirm that Ryugu’s surface is covered with similar boulders.
Journal Article
The Dawn Framing Camera
by
Michalik, H.
,
Behnke, T.
,
Fiethe, B.
in
Aerospace Technology and Astronautics
,
Asteroids
,
Astrophysics and Astroparticles
2011
The Framing Camera (FC) is the German contribution to the Dawn mission. The camera will map 4 Vesta and 1 Ceres through a clear filter and 7 band-pass filters covering the wavelengths from the visible to the near-IR. The camera will allow the determination of the physical parameters of the asteroids, the reconstruction of their global shape as well as local topography and surface geomorphology, and provide information on composition via surface reflectance characteristics. The camera will also serve for orbit navigation. The resolution of the Framing Camera will be up to 12 m per pixel in low altitude mapping orbit at Vesta (62 m per pixel at Ceres), at an angular resolution of 93.7 μrad px
−1
.
The instrument uses a reclosable front door to protect the optical system and a filter-wheel mechanism to select the band-pass for observation. The detector data is read out and processed by a data processing unit. A power converter unit supplies all required power rails for operation and thermal maintenance. For redundancy reasons, two identical cameras were provided, both located side by side on the +
Z
-deck of the spacecraft. Each camera has a mass of 5.5 kg.
Journal Article
The Camera of the MASCOT Asteroid Lander on Board Hayabusa 2
by
Yabuta, H.
,
Michaelis, H.
,
Grott, M.
in
Aerospace Technology and Astronautics
,
Angles (geometry)
,
Asteroids
2017
The MASCOT Camera (MasCam) is part of the Mobile Asteroid Surface Scout (MASCOT) lander’s science payload. MASCOT has been launched to asteroid (162173) Ryugu onboard JAXA’s Hayabusa 2 asteroid sample return mission on Dec 3rd, 2014. It is scheduled to arrive at Ryugu in 2018, and return samples to Earth by 2020. MasCam was designed and built by DLR’s Institute of Planetary Research, together with Airbus-DS Germany. The scientific goals of the MasCam investigation are to provide ground truth for the orbiter’s remote sensing observations, provide context for measurements by the other lander instruments (radiometer, spectrometer and magnetometer), the orbiter sampling experiment, and characterize the geological context, compositional variations and physical properties of the surface (e.g. rock and regolith particle size distributions). During daytime, clear filter images will be acquired. During night, illumination of the dark surface is performed by an LED array, equipped with
4
×
36
monochromatic light-emitting diodes (LEDs) working in four spectral bands. Color imaging will allow the identification of spectrally distinct surface units. Continued imaging during the surface mission phase and the acquisition of image series at different sun angles over the course of an asteroid day will contribute to the physical characterization of the surface and also allow the investigation of time-dependent processes and to determine the photometric properties of the regolith. The MasCam observations, combined with the MASCOT hyperspectral microscope (MMEGA) and radiometer (MARA) thermal observations, will cover a wide range of observational scales and serve as a strong tie point between Hayabusa 2’s remote-sensing scales (
10
3
–
10
−
3
m
) and sample scales (
10
−
3
–
10
−
6
m
). The descent sequence and the close-up images will reveal the surface features over a broad range of scales, allowing an assessment of the surface’s diversity and close the gap between the orbital observations and those made by the in-situ measurements. The MasCam is mounted inside the lander slightly tilted, such that the center of its 54.8° square field-of-view is directed towards the surface at an angle of 22° with respect to the surface plane. This is to ensure that both the surface close to the lander and the horizon are observable. The camera optics is designed according to the Scheimpflug principle, thus that the entire scene along the camera’s depth of field (150 mm to infinity) is in focus. The camera utilizes a
1024
×
1024
pixel CMOS sensor sensitive in the 400–1000 nm wavelength range, peaking at 600–700 nm. Together with the f-16 optics, this yields a nominal ground resolution of 150 micron/px at 150 mm distance (diffraction limited). The camera flight model has undergone standard radiometric and geometric calibration both at the component and system (lander) level. MasCam relies on the use of wavelet compression to maximize data return within stringent mission downlink limits. All calibration and flight data products will be generated and archived in the Planetary Data System in PDS image format.
Journal Article