Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
42
result(s) for
"Moustakidis, Serafeim"
Sort by:
An Explainable Machine Learning Model for Material Backorder Prediction in Inventory Management
by
Ntakolia, Charis
,
Moustakidis, Serafeim
,
Karlsson, Patrik
in
Breweries
,
Calibration
,
Communication
2021
Global competition among businesses imposes a more effective and low-cost supply chain allowing firms to provide products at a desired quality, quantity, and time, with lower production costs. The latter include holding cost, ordering cost, and backorder cost. Backorder occurs when a product is temporarily unavailable or out of stock and the customer places an order for future production and shipment. Therefore, stock unavailability and prolonged delays in product delivery will lead to additional production costs and unsatisfied customers, respectively. Thus, it is of high importance to develop models that will effectively predict the backorder rate in an inventory system with the aim of improving the effectiveness of the supply chain and, consequentially, the performance of the company. However, traditional approaches in the literature are based on stochastic approximation, without incorporating information from historical data. To this end, machine learning models should be employed for extracting knowledge of large historical data to develop predictive models. Therefore, to cover this need, in this study, the backorder prediction problem was addressed. Specifically, various machine learning models were compared for solving the binary classification problem of backorder prediction, followed by model calibration and a post-hoc explainability based on the SHAP model to identify and interpret the most important features that contribute to material backorder. The results showed that the RF, XGB, LGBM, and BB models reached an AUC score of 0.95, while the best-performing model was the LGBM model after calibration with the Isotonic Regression method. The explainability analysis showed that the inventory stock of a product, the volume of products that can be delivered, the imminent demand (sales), and the accurate prediction of the future demand can significantly contribute to the correct prediction of backorders.
Journal Article
Machine learning applied on the district heating and cooling sector: a review
by
Ntakolia Charis
,
Moustakidis Serafeim
,
Anagnostis Athanasios
in
Algorithms
,
Alternative energy
,
Artificial intelligence
2022
Driven by the continuous growing demand for heating and cooling, district heating and cooling systems (DHC) play a major role in the field of energy by providing environmentally friendly solutions for citizens with significant economic impact. Taken also into account the global need for greener and smarter cities, optimization and automation of current DHC operation is more imminent than ever. In order to achieve a transformation of DHC systems, new data-driven technologies are being adopted to reach the goals. In this paper the findings of a systematic literature review are presented covering articles published in the last decades in which the authors described the development and application of machine learning approaches to the DHC sector. In total, 74 articles were retrieved, analysed and categorized into two main categories: (i) heating load/demand prediction and (ii) design, maintenance and scheduling. The survey findings are presented and listed in terms of the machine learning techniques mentioned therein (supervised learning, unsupervised learning and reinforcement learning), the specific application domain (load forecast, design, maintenance and scheduling) of each article providing also insights regarding the source data used and the quality of the results.
Journal Article
Leveraging explainable machine learning to identify gait biomechanical parameters associated with anterior cruciate ligament injury
by
Giakas, Giannis
,
Moustakidis, Serafeim
,
Tsatalas, Themistoklis
in
631/114
,
692/700
,
Anterior Cruciate Ligament
2022
Anterior cruciate ligament (ACL) deficient and reconstructed knees display altered biomechanics during gait. Identifying significant gait changes is important for understanding normal and ACL function and is typically performed by statistical approaches. This paper focuses on the development of an explainable machine learning (ML) empowered methodology to: (i) identify important gait kinematic, kinetic parameters and quantify their contribution in the diagnosis of ACL injury and (ii) investigate the differences in sagittal plane kinematics and kinetics of the gait cycle between ACL deficient, ACL reconstructed and healthy individuals. For this aim, an extensive experimental setup was designed in which three-dimensional ground reaction forces and sagittal plane kinematic as well as kinetic parameters were collected from 151 subjects. The effectiveness of the proposed methodology was evaluated using a comparative analysis with eight well-known classifiers. Support Vector Machines were proved to be the best performing model (accuracy of 94.95%) on a group of 21 selected biomechanical parameters. Neural Networks accomplished the second best performance (92.89%). A state-of-the-art explainability analysis based on SHapley Additive exPlanations (SHAP) and conventional statistical analysis were then employed to quantify the contribution of the input biomechanical parameters in the diagnosis of ACL injury. Features, that would have been neglected by the traditional statistical analysis, were identified as contributing parameters having significant impact on the ML model’s output for ACL injury during gait.
Journal Article
A novel feature extraction methodology using Siamese convolutional neural networks for intrusion detection
2020
Intrusion detection systems (IDS) can play a significant role in detecting security threats or malicious attacks that aim to steal information and/or corrupt network protocols. To deal with the dynamic and complex nature of cyber-attacks, advanced intelligent tools have been applied resulting into powerful and automated IDS that rely on the latest advances of machine learning (ML) and deep learning (DL). Most of the reported effort has been devoted on building complex ML/DL architectures adopting a brute force approach towards the maximization of their detection capacity. However, just a limited number of studies have focused on the identification or extraction of user-friendly risk indicators that could be easily used by security experts. Many papers have explored various dimensionality reduction algorithms, however a large number of selected features is still required to detect the attacks successfully, which humans cannot intuitively or immediately understand. To enhance user’s trust and understanding on data without sacrificing on accuracy, this paper contributes to the transformation of the available data collected by IDS into a single actionable and easy-to-understand risk indicator. To achieve this, a novel feature extraction pipeline was implemented consisting of the following components: (i) a fuzzy allocation scheme that transforms raw data to fuzzy class memberships, (ii) a novel modality transformation mechanism for converting feature vectors to images (Vec2im) and (iii) a dimensionality reduction module that makes use of Siamese convolutional neural networks that finally reduces the input data dimensionality into a 1-d feature space. The performance of the proposed methodology was validated with respect to detection accuracy, dimensionality reduction performance and execution time on the NSL-KDD dataset via a thorough comparative analysis that demonstrated its effectiveness (86.64% testing accuracy using only one feature) over a number of well-known feature selection (FS) and extraction techniques. The output of the proposed feature extraction pipeline could be potentially used by security experts as an indicator of malicious activity, whereas the generated images could be further utilized and/or integrated as a visual analytics tool in existing IDS.
Journal Article
Classification models for assessing coronary artery disease instances using clinical and biometric data: an explainable man-in-the-loop approach
by
Moustakidis, Serafeim
,
Papandrianos, Nikolaos
,
Apostolopoulos, Ioannis D.
in
639/166/985
,
692/1807
,
692/4019
2023
The main goal driving this work is to develop computer-aided classification models relying on clinical data to identify coronary artery disease (CAD) instances with high accuracy while incorporating the expert’s opinion as input, making it a \"man-in-the-loop\" approach. CAD is traditionally diagnosed in a definite manner by Invasive Coronary Angiography (ICA). A dataset was created using biometric and clinical data from 571 patients (21 total features, 43% ICA-confirmed CAD instances) along with the expert’s diagnostic yield. Five machine learning classification algorithms were applied to the dataset. For the selection of the best feature set for each algorithm, three different parameter selection algorithms were used. Each ML model’s performance was evaluated using common metrics, and the best resulting feature set for each is presented. A stratified ten-fold validation was used for the performance evaluation. This procedure was run both using the assessments of experts/doctors as input and without them. The significance of this paper lies in its innovative approach of incorporating the expert's opinion as input in the classification process, making it a \"man-in-the-loop\" approach. This approach not only increases the accuracy of the models but also provides an added layer of explainability and transparency, allowing for greater trust and confidence in the results. Maximum achievable accuracy, sensitivity, and specificity are 83.02%, 90.32%, and 85.49% when using the expert's diagnosis as input, compared to 78.29%, 76.61%, and 86.07% without the expert's diagnosis. The results of this study demonstrate the potential for this approach to improve the diagnosis of CAD and highlight the importance of considering the role of human expertise in the development of computer-aided classification models.
Journal Article
Identification of Risk Factors and Machine Learning-Based Prediction Models for Knee Osteoarthritis Patients
by
Giakas, Giannis
,
Tsaopoulos, Dimitrios
,
Moustakidis, Serafeim
in
Accuracy
,
Arthritis
,
Biomechanics
2020
Knee Osteoarthritis (KOA) is a multifactorial disease that causes low quality of life, poor psychology and resignation from life. Furthermore, KOA is a big data problem in terms of data complexity, heterogeneity and size as it has been commonly considered in the literature with most of the reported studies being limited in the amount of information they can adequately process. The aim of this paper is: (i) To provide a robust feature selection (FS) approach that could identify important risk factors which contribute to the prediction of KOA and (ii) to develop machine learning (ML) prediction models for KOA. The current study considers multidisciplinary data from the osteoarthritis initiative (OAI) database, the available features of which come from heterogeneous sources such as questionnaire data, physical activity indexes, self-reported data about joint symptoms, disability and function as well as general health and physical exams’ data. The novelty of the proposed FS methodology lies on the combination of different well-known approaches including filter, wrapper and embedded techniques, whereas feature ranking is decided on the basis of a majority vote scheme to avoid bias. The validation of the selected factors was performed in data subgroups employing seven well-known classifiers in five different approaches. A 74.07% classification accuracy was achieved by SVM on the group of the first fifty-five selected risk factors. The effectiveness of the proposed approach was evaluated in a comparative analysis with respect to classification errors and confusion matrices to confirm its clinical relevance. The results are the basis for the development of reliable tools for the prediction of KOA progression.
Journal Article
A Hybrid Bimodal LSTM Architecture for Cascading Thermal Energy Storage Modelling
by
Moustakidis, Serafeim
,
Bochtis, Dionysis
,
Anagnostis, Athanasios
in
Algorithms
,
Alternative energy sources
,
bi-modal LSTM
2022
Modelling of thermal energy storage (TES) systems is a complex process that requires the development of sophisticated computational tools for numerical simulation and optimization. Until recently, most modelling approaches relied on analytical methods based on equations of the physical processes that govern TES systems’ operations, producing high-accuracy and interpretable results. The present study tackles the problem of modelling the temperature dynamics of a TES plant by exploring the advantages and limitations of an alternative data-driven approach. A hybrid bimodal LSTM (H2M-LSTM) architecture is proposed to model the temperature dynamics of different TES components, by utilizing multiple temperature readings in both forward and bidirectional fashion for fine-tuning the predictions. Initially, a selection of methods was employed to model the temperature dynamics of individual components of the TES system. Subsequently, a novel cascading modelling framework was realised to provide an integrated holistic modelling solution that takes into account the results of the individual modelling components. The cascading framework was built in a hierarchical structure that considers the interrelationships between the integrated energy components leading to seamless modelling of whole operation as a single system. The performance of the proposed H2M-LSTM was compared against a variety of well-known machine learning algorithms through an extensive experimental analysis. The efficacy of the proposed energy framework was demonstrated in comparison to the modelling performance of the individual components, by utilizing three prediction performance indicators. The findings of the present study offer: (i) insights on the low-error performance of tailor-made LSTM architectures fitting the TES modelling problem, (ii) deeper knowledge of the behaviour of integral energy frameworks operating in fine timescales and (iii) an alternative approach that enables the real-time or semi-real time deployment of TES modelling tools facilitating their use in real-world settings.
Journal Article
Identifying Soccer Players’ Playing Styles: A Systematic Review
by
Giakas, Giannis
,
Moustakidis, Serafeim
,
Plakias, Spyridon
in
Artificial intelligence
,
Athletes
,
Electronic games
2023
Identifying playing styles in football is highly valuable for achieving effective performance analysis. While there is extensive research on team styles, studies on individual player styles are still in their early stages. Thus, the aim of this systematic review was to provide a comprehensive overview of the existing literature on player styles and identify research areas required for further development, offering new directions for future research. Following the PRISMA guidelines for systematic reviews, we conducted a search using a specific strategy across four databases (PubMed, Scopus, Web of Science, and SPORTDiscus). Inclusion and exclusion criteria were applied to the initial search results, ultimately identifying twelve studies suitable for inclusion in this review. Through thematic analysis and qualitative evaluation of these studies, several key findings emerged: (a) a lack of a structured theoretical framework for player styles based on their positions within the team formation, (b) absence of studies investigating the influence of contextual variables on player styles, (c) methodological deficiencies observed in the reviewed studies, and (d) disparity in the objectives of sports science and data science studies. By identifying these gaps in the literature and presenting a structured framework for player styles (based on the compilation of all reported styles from the reviewed studies), this review aims to assist team stakeholders and provide guidance for future research endeavors.
Journal Article
An Explainable Classification Method of SPECT Myocardial Perfusion Images in Nuclear Cardiology Using Deep Learning and Grad-CAM
by
Moustakidis, Serafeim
,
Papandrianos, Nikolaos I.
,
Apostolopoulos, Ioannis D.
in
convolutional neural network
,
deep learning
,
explainable artificial intelligence
2022
Background: This study targets the development of an explainable deep learning methodology for the automatic classification of coronary artery disease, utilizing SPECT MPI images. Deep learning is currently judged as non-transparent due to the model’s complex non-linear structure, and thus, it is considered a «black box», making it hard to gain a comprehensive understanding of its internal processes and explain its behavior. Existing explainable artificial intelligence tools can provide insights into the internal functionality of deep learning and especially of convolutional neural networks, allowing transparency and interpretation. Methods: This study seeks to address the identification of patients’ CAD status (infarction, ischemia or normal) by developing an explainable deep learning pipeline in the form of a handcrafted convolutional neural network. The proposed RGB-CNN model utilizes various pre- and post-processing tools and deploys a state-of-the-art explainability tool to produce more interpretable predictions in decision making. The dataset includes cases from 625 patients as stress and rest representations, comprising 127 infarction, 241 ischemic, and 257 normal cases previously classified by a doctor. The imaging dataset was split into 20% for testing and 80% for training, of which 15% was further used for validation purposes. Data augmentation was employed to increase generalization. The efficacy of the well-known Grad-CAM-based color visualization approach was also evaluated in this research to provide predictions with interpretability in the detection of infarction and ischemia in SPECT MPI images, counterbalancing any lack of rationale in the results extracted by the CNNs. Results: The proposed model achieved 93.3% accuracy and 94.58% AUC, demonstrating efficient performance and stability. Grad-CAM has shown to be a valuable tool for explaining CNN-based judgments in SPECT MPI images, allowing nuclear physicians to make fast and confident judgments by using the visual explanations offered. Conclusions: Prediction results indicate a robust and efficient model based on the deep learning methodology which is proposed for CAD diagnosis in nuclear medicine.
Journal Article
Prediction of Joint Space Narrowing Progression in Knee Osteoarthritis Patients
by
Ntakolia, Charis
,
Tsaopoulos, Dimitrios
,
Moustakidis, Serafeim
in
feature selection
,
interpretation
,
joint space narrowing prediction
2021
Osteoarthritis is a joint disease that commonly occurs in the knee (KOA). The continuous increase in medical data regarding KOA has triggered researchers to incorporate artificial intelligence analytics for KOA prognosis or treatment. In this study, two approaches are presented to predict the progression of knee joint space narrowing (JSN) in each knee and in both knees combined. A machine learning approach is proposed with the use of multidisciplinary data from the osteoarthritis initiative database. The proposed methodology employs: (i) A clustering process to identify groups of people with progressing and non-progressing JSN; (ii) a robust feature selection (FS) process consisting of filter, wrapper, and embedded techniques that identifies the most informative risk factors; (iii) a decision making process based on the evaluation and comparison of various classification algorithms towards the selection and development of the final predictive model for JSN; and (iv) post-hoc interpretation of the features’ impact on the best performing model. The results showed that bounding the JSN progression of both knees can result to more robust prediction models with a higher accuracy (83.3%) and with fewer risk factors (29) compared to the right knee (77.7%, 88 risk factors) and the left knee (78.3%, 164 risk factors), separately.
Journal Article