Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
12 result(s) for "Mout, Rubul"
Sort by:
Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts
Bioorthogonal catalysis broadens the functional possibilities of intracellular chemistry. Effective delivery and regulation of synthetic catalytic systems in cells are challenging due to the complex intracellular environment and catalyst instability. Here, we report the fabrication of protein-sized bioorthogonal nanozymes through the encapsulation of hydrophobic transition metal catalysts into the monolayer of water-soluble gold nanoparticles. The activity of these catalysts can be reversibly controlled by binding a supramolecular cucurbit[7]uril ‘gate-keeper’ onto the monolayer surface, providing a biomimetic control mechanism that mimics the allosteric regulation of enzymes. The potential of this gated nanozyme for use in imaging and therapeutic applications was demonstrated through triggered cleavage of allylcarbamates for pro-fluorophore activation and propargyl groups for prodrug activation inside living cells. Regulation of bioorthogonal catalysis in living systems is challenging because of the complex intracellular environment. Now, the activity of protein-sized bioorthogonal nanozymes has been regulated by binding a supramolecular cucurbit[7]uril ‘gate-keeper’ onto the monolayer surface. This arrangement enables the controlled activation of profluorophores and prodrugs inside living cells for imaging and therapeutic applications.
Design of multi-scale protein complexes by hierarchical building block fusion
A systematic and robust approach to generating complex protein nanomaterials would have broad utility. We develop a hierarchical approach to designing multi-component protein assemblies from two classes of modular building blocks: designed helical repeat proteins (DHRs) and helical bundle oligomers (HBs). We first rigidly fuse DHRs to HBs to generate a large library of oligomeric building blocks. We then generate assemblies with cyclic, dihedral, and point group symmetries from these building blocks using architecture guided rigid helical fusion with new software named WORMS. X-ray crystallography and cryo-electron microscopy characterization show that the hierarchical design approach can accurately generate a wide range of assemblies, including a 43 nm diameter icosahedral nanocage. The computational methods and building block sets described here provide a very general route to de novo designed protein nanomaterials. De novo design of self-assembling protein nanostructures and materials is of significant interest, however design of complex, multi-component assemblies is challenging. Here, the authors present a stepwise hierarchical approach to build such assemblies using helical repeat and helical bundle proteins as building blocks, and provide an in-depth structural characterization of the resulting assemblies.
Anti-malarial activity of geldanamycin derivatives in mice infected with Plasmodium yoelii
Geldanamycin (GA), a benzoquinone ansamycin antibiotic has been shown in vitro to possess anti-plasmodial activity. Pharmacological activity of this drug is attributed to its ability to inhibit PfHSP90. The parasite growth arrest has been shown to be due to drug-induced blockage of the transition from ring to trophozoite stage. To further evaluate the consequences of this pharmacodynamic feature, the anti-malarial activity of GA analogs with enhanced drug properties in a Plasmodium-infected animal model have been evaluated for their capacity to induce clearance of the parasite. In the process, a hypothesis was subsequently tested regarding the susceptibility of the cured animals to malaria reflected in an attenuated parasite load that may be evoked by a protective immune response in the host. Six weeks old Swiss mice were infected with a lethal Plasmodium yoelii (17XL) strain. On appearance of clinical symptoms of malaria, these animals were treated with two different GA derivatives and the parasite load was monitored over 15-16 days. Drug-treated animals cured of the parasite were then re-challenged with a lethal dose of P. yoelii 17XL. Serum samples from GA cured mice that were re-challenged with P. yoelii 17XL were examined for the presence of antibodies against the parasite proteins using western blot analysis. Treatment of P. yoelii 17XL infected mice with GA derivatives showed slow recovery from clinical symptoms of the disease. Blood smears from drug treated mice indicated a dominance of ring stage parasites when compared to controls. Although, P. yoelii preferentially invades normocytes (mature rbcs), in drug-treated animals there was an increased invasion of reticulocytes. Cured animals exhibited robust protection against subsequent infection and serum samples from these animals showed antibodies against a vast majority of parasite proteins. Treatment with GA derivatives blocked the transition from ring to trophozoite stage presumably by the inhibition of HSP90 associated functions. Persistence of parasite in ring stage leads to robust humoral immune response as well as a shift in invasion specificity from normocytes to reticulocyte. It is likely that the treatment with the water-soluble GA derivative creates an attenuated state (less virulent with altered invasion specificity) that persists in the host system, allowing it to mount a robust immune response.
A multichannel nanosensor for instantaneous readout of cancer drug mechanisms
A high-throughput nanosensor based on a gold nanoparticle and fluorescent proteins allows mechanisms of chemotherapeutic drugs to be screened in minutes, offering a tool for expediting research in drug discovery and toxicology. Screening methods that use traditional genomic 1 , 2 , 3 , transcriptional 4 , proteomic 5 , 6 and metabonomic 7 signatures to characterize drug mechanisms are known. However, they are time consuming and require specialized equipment. Here, we present a high-throughput multichannel sensor platform that can profile the mechanisms of various chemotherapeutic drugs in minutes. The sensor consists of a gold nanoparticle complexed with three different fluorescent proteins that can sense drug-induced physicochemical changes on cell surfaces 8 , 9 , 10 . In the presence of cells, fluorescent proteins are rapidly displaced from the gold nanoparticle surface and fluorescence is restored. Fluorescence ‘turn on’ of the fluorescent proteins depends on the drug-induced cell surface changes, generating patterns that identify specific mechanisms of cell death induced by drugs. The nanosensor is generalizable to different cell types and does not require processing steps before analysis, offering an effective way to expedite research in drug discovery, toxicology and cell-based sensing.
Patterning of Protein/Quantum Dot Hybrid Bionanostructures
Here we demonstrate patterning of protein/quantum dot hybrid bionanostructures via electrostatic assembly of engineered negatively charged fluorescent protein with positively charged CdSe/ZnS QD patterns formed through e-beam lithography and post-patterning modification with cationic ligands.
Designed Soluble Notch Agonist Drives Human Ameloblast Maturation for Tooth Regeneration
Enamel, the hardest material in the human body, is required to protect our living organ, tooth. However, over 90% of adults have lost or damaged enamel and cannot regenerate the protective structure due to lack of enamel producing cells, ameloblasts. iPSC derived mature Ameloblasts (iAM) have promise in future regenerative dentistry. Today it is not known why iAM maturation requires intimate contact with the dentin producing cell type, odontoblast. Here we reveal that one of the critical signaling ligands emanating from odontoblasts for ameloblast maturation is Delta, the ligand for Notch receptor. We showed that our designed, soluble Notch agonist can induce iAM organoid maturation in an unprecedented manner, without interactions with odontoblast layer. This novel maturation procedure enables us to analyze the specific requirements of DLX3 function in ameloblasts, independent of its known function in odontoblasts. We now show that DLX3, the gene associated with Amelogenesis Imperfecta, is required on a cell-autonomous manner in ameloblasts for the expression of Enamelin and MMP20.
Anti-malarial activity of geldanamycin derivatives in mice infected with Plasmodiumyoelii
Background Geldanamycin (GA), a benzoquinone ansamycin antibiotic has been shown in vitro to possess anti-plasmodial activity. Pharmacological activity of this drug is attributed to its ability to inhibit PfHSP90. The parasite growth arrest has been shown to be due to drug-induced blockage of the transition from ring to trophozoite stage. To further evaluate the consequences of this pharmacodyamic feature, the anti-malarial activity of GA analogs with enhanced drug properties in a Plasmodium -infected animal model have been evaluated for their capacity to induce clearance of the parasite. In the process, a hypothesis was subsequently tested regarding the susceptibility of the cured animals to malaria reflected in an attenuated parasite load that may be evoked by a protective immune response in the host. Methods Six weeks old Swiss mice were infected with a lethal Plasmodium yoelii (17XL) strain. On appearance of clinical symptoms of malaria, these animals were treated with two different GA derivatives and the parasite load was monitored over 15-16 days. Drug-treated animals cured of the parasite were then re-challenged with a lethal dose of P. yoelii 17XL. Serum samples from GA cured mice that were re-challenged with P. yoelii 17XL were examined for the presence of antibodies against the parasite proteins using western blot analysis. Results Treatment of P. yoelii 17XL infected mice with GA derivatives showed slow recovery from clinical symptoms of the disease. Blood smears from drug treated mice indicated a dominance of ring stage parasites when compared to controls. Although, P. yoelii preferentially invades normocytes (mature rbcs), in drug-treated animals there was an increased invasion of reticulocytes. Cured animals exhibited robust protection against subsequent infection and serum samples from these animals showed antibodies against a vast majority of parasite proteins. Conclusions Treatment with GA derivatives blocked the transition from ring to trophozoite stage presumably by the inhibition of HSP90 associated functions. Persistence of parasite in ring stage leads to robust humoral immune response as well as a shift in invasion specificity from normocytes to reticulocyte. It is likely that the treatment with the water-soluble GA derivative creates an attenuated state (less virulent with altered invasion specificity) that persists in the host system, allowing it to mount a robust immune response.
De novo design of modular protein hydrogels with programmable intra- and extracellular viscoelasticity
Relating the macroscopic properties of protein-based materials to their underlying component microstructure is an outstanding challenge. Here, we exploit computational design to specify the size, flexibility, and valency of de novo protein building blocks, as well as the interaction dynamics between them, to investigate how molecular parameters govern the macroscopic viscoelasticity of the resultant protein hydrogels. We construct gel systems from pairs of symmetric protein homo-oligomers, each comprising 2, 5, 24, or 120 individual protein components, that are crosslinked either physically or covalently into idealized step-growth biopolymer networks. Through rheological assessment and molecular dynamics (MD) simulation, we find that the covalent linkage of multifunctional precursors yields hydrogels whose viscoelasticity depends on the crosslink length between the constituent building blocks. In contrast, reversibly crosslinking the homo-oligomeric components with a computationally designed heterodimer results in non-Newtonian biomaterials exhibiting fluid-like properties under rest and low shear, but shear-stiffening solid-like behavior at higher frequencies. Exploiting the unique genetic encodability of these materials, we demonstrate the assembly of protein networks within living mammalian cells and show via fluorescence recovery after photobleaching (FRAP) that mechanical properties can be tuned intracellularly, in correlation with matching formulations formed extracellularly. We anticipate that the ability to modularly construct and systematically program the viscoelastic properties of designer protein-based materials could have broad utility in biomedicine, with applications in tissue engineering, therapeutic delivery, and synthetic biology.Relating the macroscopic properties of protein-based materials to their underlying component microstructure is an outstanding challenge. Here, we exploit computational design to specify the size, flexibility, and valency of de novo protein building blocks, as well as the interaction dynamics between them, to investigate how molecular parameters govern the macroscopic viscoelasticity of the resultant protein hydrogels. We construct gel systems from pairs of symmetric protein homo-oligomers, each comprising 2, 5, 24, or 120 individual protein components, that are crosslinked either physically or covalently into idealized step-growth biopolymer networks. Through rheological assessment and molecular dynamics (MD) simulation, we find that the covalent linkage of multifunctional precursors yields hydrogels whose viscoelasticity depends on the crosslink length between the constituent building blocks. In contrast, reversibly crosslinking the homo-oligomeric components with a computationally designed heterodimer results in non-Newtonian biomaterials exhibiting fluid-like properties under rest and low shear, but shear-stiffening solid-like behavior at higher frequencies. Exploiting the unique genetic encodability of these materials, we demonstrate the assembly of protein networks within living mammalian cells and show via fluorescence recovery after photobleaching (FRAP) that mechanical properties can be tuned intracellularly, in correlation with matching formulations formed extracellularly. We anticipate that the ability to modularly construct and systematically program the viscoelastic properties of designer protein-based materials could have broad utility in biomedicine, with applications in tissue engineering, therapeutic delivery, and synthetic biology.
Designed Endocytosis-Triggering Proteins mediate Targeted Degradation
Endocytosis and lysosomal trafficking of cell surface receptors can be triggered by interaction with endogenous ligands. Therapeutic approaches such as LYTAC1,2 and KineTAC3, have taken advantage of this to target specific proteins for degradation by fusing modified native ligands to target binding proteins. While powerful, these approaches can be limited by possible competition with the endogenous ligand(s), the requirement in some cases for chemical modification that limits genetic encodability and can complicate manufacturing, and more generally, there may not be natural ligands which stimulate endocytosis through a given receptor. Here we describe general protein design approaches for designing endocytosis triggering binding proteins (EndoTags) that overcome these challenges. We present EndoTags for the IGF-2R, ASGPR, Sortillin, and Transferrin receptors, and show that fusing these tags to proteins which bind to soluble or transmembrane protein leads to lysosomal trafficking and target degradation; as these receptors have different tissue distributions, the different EndoTags could enable targeting of degradation to different tissues. The modularity and genetic encodability of EndoTags enables AND gate control for higher specificity targeted degradation, and the localized secretion of degraders from engineered cells. The tunability and modularity of our genetically encodable EndoTags should contribute to deciphering the relationship between receptor engagement and cellular trafficking, and they have considerable therapeutic potential as targeted degradation inducers, signaling activators for endocytosis-dependent pathways, and cellular uptake inducers for targeted antibody drug and RNA conjugates.Endocytosis and lysosomal trafficking of cell surface receptors can be triggered by interaction with endogenous ligands. Therapeutic approaches such as LYTAC1,2 and KineTAC3, have taken advantage of this to target specific proteins for degradation by fusing modified native ligands to target binding proteins. While powerful, these approaches can be limited by possible competition with the endogenous ligand(s), the requirement in some cases for chemical modification that limits genetic encodability and can complicate manufacturing, and more generally, there may not be natural ligands which stimulate endocytosis through a given receptor. Here we describe general protein design approaches for designing endocytosis triggering binding proteins (EndoTags) that overcome these challenges. We present EndoTags for the IGF-2R, ASGPR, Sortillin, and Transferrin receptors, and show that fusing these tags to proteins which bind to soluble or transmembrane protein leads to lysosomal trafficking and target degradation; as these receptors have different tissue distributions, the different EndoTags could enable targeting of degradation to different tissues. The modularity and genetic encodability of EndoTags enables AND gate control for higher specificity targeted degradation, and the localized secretion of degraders from engineered cells. The tunability and modularity of our genetically encodable EndoTags should contribute to deciphering the relationship between receptor engagement and cellular trafficking, and they have considerable therapeutic potential as targeted degradation inducers, signaling activators for endocytosis-dependent pathways, and cellular uptake inducers for targeted antibody drug and RNA conjugates.