Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
17
result(s) for
"Mubeen, Samavia"
Sort by:
Agricultural Strategies to Reduce Cadmium Accumulation in Crops for Food Safety
by
Mubeen, Samavia
,
He, Chuntao
,
Yang, Zhongyi
in
Accumulation
,
Adsorption
,
Agricultural industry
2023
Cadmium (Cd) contamination in edible agricultural products, especially in crops, has raised worldwide concerns regarding food safety consumption. This review summarizes the current knowledge of the applicable methods and perspectives for reducing Cd contamination of agricultural products. Agricultural approaches of soil amendments, irrigation management, microbial agent, and cropping patterns were systematically concluded to illustrate the developments and achievements in crop contamination management. The use of traditional soil amendments as well as novel nano-materials has contributed to producing safe crops in agricultural soil contaminated with Cd. This review provides an inspiring and promising tool for maintaining food safety by reducing Cd accumulation in edible agricultural products.
Journal Article
Integrated physiological and metabolomic responses reveal mechanisms of Cd tolerance and detoxification in kenaf (Hibiscus cannabinus L.) under Cd stress
2024
Cadmium (Cd) is a highly toxic trace element that occurs in large quantities in agricultural soils. The cultivation of industrial crops with high phytoremediation potential, such as kenaf, could effectively reduce soil Cd contamination, but the mechanisms of toxicity, tolerance, and detoxification remain unclear.
In this study, the effects of different Cd concentrations (0, 100, 250, and 400 µM) on growth, biomass, Cd uptake, physiological parameters, metabolites and gene expression response of kenaf were investigated in a hydroponic experiment.
The results showed that Cd stress significantly altered the ability of kenaf to accumulate and transport Cd; increased the activity of hydrogen peroxide (H
O
), superoxide anion (O
), and malondialdehyde (MDA); reduced the activities of superoxide dismutase
SOD) and catalase (CAT); and decreased the content of photosynthetic pigments, resulting in significant changes in growth and biomass production. Exposure to Cd was found to have a detrimental effect on the ascorbate-glutathione (AsA-GSH) cycle in the roots, whereas it resulted in an elevation in AsA levels and a reduction in GSH levels in the leaves. The increased content of cell wall polysaccharides under Cd stress could contribute to Cd retention in roots and limited Cd transport to above-ground plant tissues. Metabolomic analyses revealed that alanine, aspartate, and glutamate metabolism, oxidative phosphorylation, ABC transporter, and carbon metabolism were the major metabolic pathways associated with Cd stress tolerance. Cd stress increased gene expression of
and
in roots, which resulted in kenaf roots accumulating high Cd concentrations. This study extends our knowledge of the factors regulating the response of kenaf to Cd stress. This work provided a physiological and metabolomic perspective on the mechanism controlling the response of kenaf to Cd stress.
Journal Article
Calcium Nanoparticles Impregnated With Benzenedicarboxylic Acid: A New Approach to Alleviate Combined Stress of DDT and Cadmium in Brassica alboglabra by Modulating Bioacummulation, Antioxidative Machinery and Osmoregulators
by
Mubeen, Samavia
,
Siddiqui, Manzer H.
,
Akram, Waheed
in
abiotic stress
,
Antioxidants
,
Bioaccumulation
2022
At present, the alleviation of stress caused by climate change and environmental contaminants is a crucial issue. Dichlorodiphenyltrichloroethane (DDT) is a persistent organic pollutant (POP) and an organochlorine, which causes significant health problems in humans. The stress caused by cadmium (Cd) and the toxicity of DDT have direct effects on the growth and yield of crop plants. Ultimately, the greater uptake and accumulation of DDT by edible plants affects human health by contaminating the food chain. The possible solution to this challenging situation is to limit the passive absorption of POPs into the plants. Calcium (Ca) is an essential life component mandatory for plant growth and survival. This study used impregnated Ca (Bd Ca ) of benzenedicarboxylic acid (Bd) to relieve abiotic stress in plants of Brassica alboglabra . Bd Ca mitigated the deleterious effects of Cd and reduced DDT bioaccumulation. By increasing the removal efficacy (RE) up to 256.14%, Bd Ca greatly decreased pollutant uptake (Cd 82.37% and DDT 93.64%) and supported photosynthetic machinery (86.22%) and antioxidant enzyme defenses (264.73%), in applied plants. Exogenously applied Bd also successfully improved the antioxidant system and the physiochemical parameters of plants. However, impregnation with Ca further enhanced plant tolerance to stress. This novel study revealed that the combined application of Ca and Bd could effectively relieve individual and combined Cd stress and DDT toxicity in B. alboglabra .
Journal Article
Comparative transcriptomics reveals defense acquisition in Brassica rapa by synchronizing brassinosteroids metabolism with PR1 expression
by
Hu, Du
,
Mubeen, Samavia
,
Akram, Waheed
in
Agriculture
,
Biomedical and Life Sciences
,
Biosynthesis
2022
The current investigation reveals the molecular basis of
Brassica rapa
resistance against
Hyaloperonospora brassicae
based on RNA sequencing. The resistant line RB5 remained symptomless even after three days of post-inoculation. There was the maximum number of down-regulated genes (5156) in S1 after 96 h post-inoculation. Resistant line RB5 had 392 upregulated genes related to metabolic processes at 0 h post-inoculation. The comparison of both the lines after 96 h showed a slower but steady upregulation in the gene expression in RB5 (less than 3000 genes). The brassinosteroid (BR) biosynthesis pathway showed a down-regulation of its genes with the maximum down-regulation of BSK. Studying the calcium ions chain revealed 72% upregulated genes. However, the concluding physiological response resulted from the upregulation of PR genes (usually more than 2 times upregulation in most cases). Among PR genes, the loci Bra003774 and Bra025730 depicted an upregulation of more than two times, consequently supporting the elevated expression of WRKY22 and PR1. However, due to the end position of PR1 in defense responses, it was annotated as a delayed response factor to the attacking pathogen. MKS1 pathway was proved less sensitive toward the pathogenic attack; however, MEKK2 metabolism was proved more sensitive. After PR1, Zinc finger protein metabolism was the second highly activated process in the
Brassica
cells with the elevated expression of 42% genes. The study adds precious information about the host–pathogen relationship and could assist plant protection and food security programs.
Journal Article
Physiological and Transcriptome Analysis Reveal the Underlying Mechanism of Salicylic Acid-Alleviated Drought Stress in Kenaf (Hibiscus cannabinus L.)
by
Zhang, Hui
,
Mubeen, Samavia
,
Pan, Jiao
in
Abiotic stress
,
Abscisic acid
,
Agricultural production
2025
Salicylic acid (SA) plays a crucial role in alleviating drought stress in plants. However, little is known about the molecular mechanisms underlying exogenous SA on the drought tolerance of kenaf. In this study, the kenaf seedlings were subjected to physiological and transcriptomic analysis under control (CK), moderate drought stress (D), and moderate drought stress with 1 mM SA (D_SA). Under drought conditions, SA significantly improved the plant biomass, leaf area, antioxidant enzyme activities (SOD, POD, and CAT), soluble sugars, starch and proline contents, and photosynthesis, while the contents of MDA, H2O2, and O2− were significantly decreased. A total of 3430 (1118 up-regulated and 2312 down-regulated) genes were differentially expressed in group D, compared with group CK. At the same time, 92 (56 up-regulated and 36 down-regulated) genes were differentially expressed in group D_SA compared with group D. GO and KEGG analysis showed that the differentially expressed genes (DEGs) were enriched in various metabolic pathways, such as carbohydrate metabolism, lipid metabolism, and the metabolism of terpenoids and polyketides. Results showed that the genes related to the antioxidant system, sucrose and starch synthesis, osmoregulation, ABA signal regulation, and differentially expressed transcription factors, such as AP2/ERF4 and NF-Y1, were involved in the increased drought tolerance of kenaf under exogenous SA. Virus-induced gene silencing (VIGS)-mediated silencing of salicylate binding protein 2 gene (HcSABP2) decreased the drought resistance of kenaf seedlings. Thus, the present study provides valuable insights into the regulatory mechanism of exogenous SA in alleviating drought stress in kenaf.
Journal Article
Functional characterization of malate dehydrogenase, HcMDH1, gene in enhancing abiotic stress tolerance in kenaf (Hibiscus cannabinus L.)
2024
Drought and salt stress are two important environmental factors that significantly restrict plant growth and reproduction. Malate dehydrogenase is essential to life as it is engaged in numerous physiological processes in cells, particularly those related to abiotic stress reactions. However, a complete understanding of MDH family members in kenaf is not clear yet. In this study, subcellular localization analysis and a yeast transcriptional activation assay revealed that HcMDH1 was localized in chloroplasts but had no transcriptional activation activity. When exposed to salt or drought stress, yeast cells expressing the HcMDH1 gene exhibit an increased survival rate. Overexpression of HcMDH1 in Arabidopsis increased seed germination rate and root growth when transgenic lines were exposed to varying concentrations of mannitol and NaCl. Subsequent physiological studies revealed that transgenic lines had higher concentrations of soluble carbohydrates, proline, and chlorophyll and lower concentrations of malondialdehyde (MDA) and reactive oxygen species (ROS). Furthermore, inhibiting HcMDH1 in kenaf using virus-induced gene silencing (VIGS) decreased salt and drought tolerance due to elevated ROS and MDA levels. In these silenced lines, the expression of six essential genes engaged in stress-resistance and photosynthesis, namely HcGAPDH, HcGLYK, HcFBA, HcFBPase, HcPGA, and HcLSD, is significantly altered under salt and drought stress. In summary, HcMDH1 is a complex and positive regulatory gene that plays a key role in regulating chlorophyll content, antioxidant enzyme activity and osmotic regulation under salt and drought stress, which may have implications for kenaf transgenic breeding.HighlightsHcMDH1 is located in the chloroplasts and could be induced by salt and drought stresses. Expression of the HcMDH1 in yeast improved its survival rate under salt and drought conditions.HcMDH1 can improve salt and drought tolerance ability by changing antioxidant activity. Silencing HcMDH1 reduced salt and drought tolerance by altering the expression of some stress-responsive genes.
Journal Article
Evaluation of three wheat ( Triticum aestivum L.) cultivars as sensitive Cd biomarkers during the seedling stage
2020
Sensitive seedling crops have been developed to monitor Cadmium (Cd) contamination in agricultural soil. In the present study, 18 parameters involving growth conditions and physiological performances were assessed to evaluate Cd-responses of three wheat ( Triticum aestivum L.) cultivars, Xihan1 (XH), Longzhong1 (LZ) and Dingfeng16 (DF). Principle component analysis illustrated that Factor 1, representing growth performance, soluble sugar content and catalase activity, responded to the Cd treatments in a dose dependent manner, while Factor 2 represented by chlorophyll content and germinating root growth was mainly dependent on cultivar differences. Higher inhibition rates were observed in growth performance than in physiological responses, with the highest inhibition rates of shoot biomasses (39.6%), root length (58.7%), root tip number (57.8%) and bifurcation number (83.2%), even under the lowest Cd treatment (2.5 mg·L −1 ). According to the Cd toxicity sensitivity evaluation, DF exerted highest tolerance to Cd stress in root growth while LZ was more sensitive to Cd stress, suggesting LZ as an ideal Cd contaminant biomarker. This study will provide novel insight into the cultivar-dependent response during using wheat seedlings as Cd biomarkers.
Journal Article
Metabolic and Proteomic Perspectives of Augmentation of Nutritional Contents and Plant Defense in Vigna unguiculata
by
Mubeen, Samavia
,
Akram, Waheed
,
Wu, Tingquan
in
Adenosine Triphosphate - metabolism
,
Alstonia - metabolism
,
Ascomycota - pathogenicity
2020
The current study enlists metabolites of Alstonia scholaris with bioactivities, and the most active compound, 3-(1-methylpyrrolidin-2-yl) pyridine, was selected against Macrophomina phaseolina. Appraisal of the Alstonia metabolites identified the 3-(1-methylpyrrolidin-2-yl) pyridine as a bioactive compound which elevated vitamins and nutritional contents of Vigna unguiculata up to ≥18%, and other physiological parameters up to 28.9%. The bioactive compound (0.1%) upregulated key defense genes, shifted defense metabolism from salicylic acid to jasmonic acid, and induced glucanase enzymes for improved defenses. The structural studies categorized four glucanase-isozymes under beta-glycanases falling in (Trans) glycosidases with TIM beta/alpha-barrel fold. The study determined key-protein factors (Q9SAJ4) for elevated nutritional contents, along with its structural and functional mechanisms, as well as interactions with other loci. The nicotine-docked Q9SAJ4 protein showed a 200% elevated activity and interacted with AT1G79550.2, AT1G12900.1, AT1G13440.1, AT3G04120.1, and AT3G26650.1 loci to ramp up the metabolic processes. Furthermore, the study emphasizes the physiological mechanism involved in the enrichment of the nutritional contents of V. unguiculata. Metabolic studies concluded that increased melibiose and glucose 6-phosphate contents, accompanied by reduced trehalose (-0.9-fold), with sugar drifts to downstream pyruvate biosynthesis and acetyl Co-A metabolism mainly triggered nutritional contents. Hydrogen bonding at residues G.357, G.380, and G.381 docked nicotine with Q9SAJ4 and transformed its bilobed structure for easy exposure toward substrate molecules. The current study augments the nutritional value of edible stuff and supports agriculture-based country economies.
Journal Article
Intercropping of kenaf and soybean affects plant growth, antioxidant capacity, and uptake of cadmium and lead in contaminated mining soil
by
Mubeen, Samavia
,
Luo, Dengjie
,
Pan, Jiao
in
Agricultural practices
,
Agricultural production
,
antioxidant activity
2023
Intercropping is considered a sustainable agricultural practice that can reduce the environmental impacts on agriculture. Our study investigated the morphology, physiology, and cadmium (Cd) and lead (Pb) uptake of kenaf (
Hibiscus cannabinus
L.) and soybean (
Glycine max
L.) under intercropping in mining soil. Results showed that mutual intercropping is conducive to the growth and biomass accumulation of kenaf and soybean, compared to their respective monoculture. Intercropping increased the relative chlorophyll index in kenaf, while that in soybean had no significant effect. Furthermore, intercropping increased the antioxidant enzyme activity of kenaf, while that of soybean reduced or had no significant effect. The content of malondialdehyde (MDA) was decreased in both of the species. Compared to their respective monoculture, Cd content was increased in kenaf leaves and reduced in soybean roots. Moreover, intercropping decreased the Pb content in tissues of both the species, except that Pb content of kenaf roots was increased. At the same time, root, leaf, or stem bioconcentration factors also performed the same trend, and TF was less than 1. These results indicated that intercropping can increase the plant growth and decrease the metal content in plant tissues. Present findings could provide support for future research on kenaf and soybean cultivation in contaminated lands. In addition, the present study strengthens our understanding about the effectiveness of intercropping system on heavy metal–contaminated lands for sustainable agricultural production.
Journal Article
Exogenous methyl jasmonate enhanced kenaf (Hibiscus cannabinus) tolerance against lead (Pb) toxicity by improving antioxidant capacity and osmoregulators
2024
In this study, the effects of exogenous methyl jasmonate (MeJA) on metal uptake and its ability to attenuate metal toxicity in kenaf plants under Pb stress were investigated. The experiment was conducted with five different MeJA concentrations (0, 40, 80, 160, and 320 μM) as a foilar application to kenaf plants exposed to 200 μM Pb stress. The results revealed that pretreatmen of MeJA significantly increased plant dry weight, plant height, and root architecture at all concentrations tested, with the most significant increase at 320 μM. Foliar application of MeJA at 160 μM and 320 μM increased the Pb concentrations in leaves and stems as well as the translocation factor (TF) from root to leaf. However, the bioaccumulation factor in the shoot initially decreased and then increased with increasing MeJA concentration. By increasing enzymatic (SOD, POD, and CAT) and non-enzymatic (AsA and non-protein thiols) antioxidants, MeJA pretreatment decreased lipid peroxidation, O
2
−
and H
2
O
2
accumulation and recovered photosynthetic pigment content under Pb stress. Increased osmolytes (proline, sugar, and starch) and protein content after MeJA pretreatment under Pb stress restore cellular homeostasis and improved kenaf tolerance. Our results suggest that MeJA pretreatment modifies the antioxidant machinery of kenaf and inhibits stress-related processes that cause lipid peroxidation, hence enhancing plant tolerance to Pb stress.
Journal Article