Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "Muddiman, Katie J."
Sort by:
Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by compensatory mutation
Plasmids play an important role in bacterial genome evolution by transferring genes between lineages. Fitness costs associated with plasmid carriage are expected to be a barrier to gene exchange, but the causes of plasmid fitness costs are poorly understood. Single compensatory mutations are often sufficient to completely ameliorate plasmid fitness costs, suggesting that such costs are caused by specific genetic conflicts rather than generic properties of plasmids, such as their size, metabolic burden, or gene expression level. By combining the results of experimental evolution with genetics and transcriptomics, we show here that fitness costs of 2 divergent large plasmids in Pseudomonas fluorescens are caused by inducing maladaptive expression of a chromosomal tailocin toxin operon. Mutations in single genes unrelated to the toxin operon, and located on either the chromosome or the plasmid, ameliorated the disruption associated with plasmid carriage. We identify one of these compensatory loci, the chromosomal gene PFLU4242 , as the key mediator of the fitness costs of both plasmids, with the other compensatory loci either reducing expression of this gene or mitigating its deleterious effects by up-regulating a putative plasmid-borne ParAB operon. The chromosomal mobile genetic element Tn6291, which uses plasmids for transmission, remained up-regulated even in compensated strains, suggesting that mobile genetic elements communicate through pathways independent of general physiological disruption. Plasmid fitness costs caused by specific genetic conflicts are unlikely to act as a long-term barrier to horizontal gene transfer (HGT) due to their propensity for amelioration by single compensatory mutations, helping to explain why plasmids are so common in bacterial genomes.
A chromosomal mutation is superior to a plasmid-encoded mutation for plasmid fitness cost compensation
Plasmids are important vectors of horizontal gene transfer in microbial communities but can impose a burden on the bacteria that carry them. Such plasmid fitness costs are thought to arise principally from conflicts between chromosomal- and plasmid-encoded molecular machineries, and thus can be ameliorated by compensatory mutations (CMs) that reduce or resolve the underlying causes. CMs can arise on plasmids (i.e., plaCM) or on chromosomes (i.e., chrCM), with contrasting predicted effects upon plasmid success and subsequent gene transfer because plaCM can also reduce fitness costs in plasmid recipients, whereas chrCM can potentially ameliorate multiple distinct plasmids. Here, we develop theory and a novel experimental system to directly compare the ecological effects of plaCM and chrCM that arose during evolution experiments between Pseudomonas fluorescens SBW25 and its sympatric mercury resistance megaplasmid pQBR57. We show that while plaCM was predicted to succeed under a broader range of parameters in mathematical models, chrCM dominated in our experiments, including conditions with numerous recipients, due to a more efficacious mechanism of compensation, and advantages arising from transmission of costly plasmids to competitors (plasmid “weaponisation”). We show analytically the presence of a mixed Rock-Paper-Scissors (RPS) regime for CMs, driven by trade-offs with horizontal transmission, that offers one possible explanation for the observed failure of plaCM to dominate even in competition against an uncompensated plasmid. Our results reveal broader implications of plasmid-bacterial evolution for plasmid ecology, demonstrating the importance of specific compensatory mutations for resistance gene spread. One consequence of the superiority of chrCM over plaCM is the likely emergence in microbial communities of compensated bacteria that can act as “hubs” for plasmid accumulation and dissemination.
Impact of growth conditions on the abundance and diversity of cultivable bacteria recovered from Pheronema carpenteri and investigation of their antimicrobial potential
Abstract The deep sea is a largely unexplored extreme environment supporting a diverse biological community adapted to low temperatures and high pressures. Such environments support microbial life that may be a source of novel antibiotics and other drugs. Whilst this is often the case, many species with bioactive capabilities may be missed with traditional culturing methods. In this study, a total of 16 different concentrations and types of media were employed, to culture 389 bacterial isolates using Dilution to Extinction methods and Actinobacteria Directed Cultivation techniques. This generated 72 (18.6%) isolates with narrow and broad-spectrum activity against ESKAPE pathogens including Escherichia coli (E. coli), methicillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococci. We also report that an early-stage ‘One Strain Many Compounds’ approach can reveal a greater number of bioactive isolates that otherwise would have been missed; 12 isolates initially deemed ‘inactive’ were seen to exhibit activity towards S. aureus and/or E. coli. We emphasize the importance of a thorough initial screening method to capture bioactive isolates and show how selecting only morphologically distinct isolates for screening may result in species with promising bioactivity being overlooked. Our findings justify on-going investigation of Pheronema sponges for bioactive microbiota. Bacteria that produce potentially new antibiotic compounds can be found in deep sea sponges like Pheronema carpenteri using a range of microbial growth conditions.
Superiority of chromosomal compared to plasmid-encoded compensatory mutations
Plasmids are important vectors of horizontal gene transfer in microbial communities but can impose a burden on the bacteria that carry them. Such plasmid fitness costs are thought to arise principally from conflicts between chromosomal- and plasmid-encoded molecular machineries, and thus can be ameliorated by compensatory mutations (CMs) that reduce or resolve the underlying causes. CMs can arise on plasmids (i.e. plaCM) or on chromosomes (i.e. chrCM), with contrasting predicted effects upon plasmid success and subsequent gene transfer because plaCM can also reduce fitness costs in plasmid recipients, whereas chrCM can potentially ameliorate multiple distinct plasmids. Here, we develop theory and a novel experimental system to directly compare the ecological effects of plaCM and chrCM that arose during evolution experiments between Pseudomonas fluorescens SBW25 and its sympatric mercury resistance megaplasmid pQBR57. We show that while plaCM was predicted to succeed under a broader range of parameters in mathematical models, experimentally chrCM dominated under all conditions, including those with numerous recipients, due to a more efficacious mechanism of compensation, and advantages arising from transmission of costly plasmids to competitors (plasmid 'weaponisation'). We show analytically the presence of a mixed Rock-Paper-Scissors regime for plaCM, driven by trade-offs with horizontal transmission, that explains the observed failure of plaCM to dominate even in competition against an uncompensated plasmid. Our results reveal broader implications of plasmid-bacterial evolution for plasmid ecology, demonstrating the importance of compensatory mutations for resistance gene spread. One consequence of the superiority of chrCM over plaCM is the likely emergence in microbial communities of compensated bacteria that can act as 'hubs' for plasmid accumulation and dissemination.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://github.com/jpjh/COMPMUT_dynamics* https://doi.org/10.5285/51046841-deaa-422f-a303-2c0759f014b4
Functional Characterisation of Salmonella Typhimurium CueP
Metals are used as cofactors for enzymes, but are toxic in excess. In order to avoid the deleterious effects posed by metals, the cell must employ strict metal homeostasis systems. One such system is the Cue copper-resistance system in Salmonella enterica serovar Typhimurium (S. Typhimurium) which includes the periplasmic copper binding protein CueP. Previous studies have shown CueP to be a major periplasmic copper-sequestering protein that has a role in supplying copper to, and thus activating, the periplasmic Cu,Zn-superoxide dismutase enzyme SodCII (Osman et al., 2013). SodCII protects the cell from reactive oxygen species (ROS), due for example to the actions of the respiratory burst oxidase in host macrophages. However, despite its ability to sequester copper and activate SodCII, the precise physiological role of CueP in S. Typhimurium has remained unresolved since cueP mutants of S. Typhimurium strain SL1344 (the wild-type stain used in this study) do not exhibit a phenotype with respect to tolerance to copper or reactive oxygen species. In addition, the copper-binding mechanism of CueP and its interactions with other copper-binding proteins, including SodCII, have not been examined. An aim of this study was to establish a phenotype for a cueP mutant of S. Typhimurium with respect to copper and/or ROS tolerance. It was hypothesised that the possession of KatG (catalase) and multiple superoxide dismutases (SodCI, SodA and SodB), in addition to SodCII, by S. Typhimurium may confer functional redundancy with respect to copper and ROS tolerance. Hence mutants lacking katG (ΔkatG) or the various superoxide dismutase encoding genes (ΔsodA/ΔsodB/ΔsodCI/ΔsodCII) with and without functional cueP were generated. The ΔkatG mutants exhibited reduced catalase activity and reduced tolerance to hydrogen peroxide, consistent with the loss of KatG, however the additional loss of cueP did not reduce tolerance to hydrogen peroxide further. Similarly, tolerance to copper and extracellular superoxide was also unaltered in the ΔkatG/ΔcueP mutant. The tolerance of the various superoxide dismutase mutants to copper and various ROS was also unaffected by the presence or absence of CueP. To examine the role of CueP in SodCII activation in vivo, SodCII was over-expressed in S. Typhimurium (in a ΔsodA/ΔsodB/ΔsodCI/ΔsodCII background) with and without functional cueP and superoxide dismutase activity measured in both whole cells and periplasmic extracts. SodCII-dependent superoxide dismutase activity was successfully identified within the periplasmic extracts. However, surprisingly, the level of activity was unaffected by the presence 16 or absence of CueP and/or the addition of copper. It is possible that SodCII is thus able to scavenge sufficient copper for activity from the reagents used in these assays. Similarly, in an alternative approach to examine the role of CueP in vitro, both SodCII and CueP (WT and potential metal-binding residue mutant forms) were successfully over-expressed in E. coli and methods for their purification optimised (without the use of affinity tags). ICP-MS analysis indicated that a CuePC104S mutant contains > 18-fold less copper than the CueP WT protein. Furthermore, superoxide dismutase activity assays using purified proteins, indicated that the CuePC104S mutant was less able to activate SodCII than the WT CueP. Taken together, these results are consistent with a role for the Cys104 residue in copper-binding by CueP. Bioinformatics results suggest the presence of CueP or homologous genes in the presence of other bacteria, including pathogens such as Klebsiella, Yersinia and Shigella spp. Further understanding of the role of CueP and the systems used by S. Typhimurium to avoid both copper and ROS stress may inform the development of novel treatment strategies for bacterial diseases.
Plasmid fitness costs are caused by specific genetic conflicts
Plasmids play an important role in bacterial genome evolution by transferring genes between lineages. Fitness costs associated with plasmid acquisition are expected to be a barrier to gene exchange, but the causes of plasmid fitness costs are poorly understood. Single compensatory mutations are often sufficient to completely ameliorate plasmid fitness costs, suggesting that such costs are caused by specific genetic conflicts rather than generic properties of plasmids, such as their size, metabolic burden, or expression level. Here we show — using a combination of experimental evolution, reverse genetics, and transcriptomics — that fitness costs of two divergent large plasmids in Pseudomonas fluorescens are caused by inducing maladaptive expression of a chromosomal tailocin toxin operon. Mutations in single genes unrelated to the toxin operon, and located on either the chromosome or the plasmid, ameliorated the disruption associated with plasmid acquisition. We identify one of these compensatory loci, the chromosomal gene PFLU4242, as the key mediator of the fitness costs of both plasmids, with the other compensatory loci either reducing expression of this gene or mitigating its deleterious effects by upregulating a putative plasmid-borne ParAB operon. The chromosomal mobile genetic element Tn6291, which uses plasmids for transmission, remained upregulated even in compensated strains, suggesting that mobile genetic elements communicate through pathways independent of general physiological disruption. Plasmid fitness costs caused by specific genetic conflicts are unlikely to act as a long-term barrier to horizontal gene transfer due to their propensity for amelioration by single compensatory mutations, explaining why plasmids are so common in bacterial genomes.