Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
82 result(s) for "Muglia, P"
Sort by:
α-5/α-3 nicotinic receptor subunit alleles increase risk for heavy smoking
Twin studies indicate that additive genetic effects explain most of the variance in nicotine dependence (ND), a construct emphasizing habitual heavy smoking despite adverse consequences, tolerance and withdrawal. To detect ND alleles, we assessed cigarettes per day (CPD) regularly smoked, in two European populations via whole genome association techniques. In these ∼7500 persons, a common haplotype in the CHRNA3–CHRNA5 nicotinic receptor subunit gene cluster was associated with CPD (nominal P =6.9 × 10 −5 ). In a third set of European populations ( n =∼7500) which had been genotyped for ∼6000 SNPs in ∼2000 genes, an allele in the same haplotype was associated with CPD (nominal P =2.6 × 10 −6 ). These results (in three independent populations of European origin, totaling ∼15 000 individuals) suggest that a common haplotype in the CHRNA5/CHRNA3 gene cluster on chromosome 15 contains alleles, which predispose to ND.
Genome-wide association study of recurrent major depressive disorder in two European case–control cohorts
Major depressive disorder (MDD) is a highly prevalent disorder with substantial heritability. Heritability has been shown to be substantial and higher in the variant of MDD characterized by recurrent episodes of depression. Genetic studies have thus far failed to identify clear and consistent evidence of genetic risk factors for MDD. We conducted a genome-wide association study (GWAS) in two independent datasets. The first GWAS was performed on 1022 recurrent MDD patients and 1000 controls genotyped on the Illumina 550 platform. The second was conducted on 492 recurrent MDD patients and 1052 controls selected from a population-based collection, genotyped on the Affymetrix 5.0 platform. Neither GWAS identified any SNP that achieved GWAS significance. We obtained imputed genotypes at the Illumina loci for the individuals genotyped on the Affymetrix platform, and performed a meta-analysis of the two GWASs for this common set of approximately half a million SNPs. The meta-analysis did not yield genome-wide significant results either. The results from our study suggest that SNPs with substantial odds ratio are unlikely to exist for MDD, at least in our datasets and among the relatively common SNPs genotyped or tagged by the half-million-loci arrays. Meta-analysis of larger datasets is warranted to identify SNPs with smaller effects or with rarer allele frequencies that contribute to the risk of MDD.
Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder
Meta-analyses of bipolar disorder (BD) genome-wide association studies (GWAS) have identified several genome-wide significant signals in European-ancestry samples, but so far account for little of the inherited risk. We performed a meta-analysis of ∼750 000 high-quality genetic markers on a combined sample of ∼14 000 subjects of European and Asian-ancestry (phase I). The most significant findings were further tested in an extended sample of ∼17 700 cases and controls (phase II). The results suggest novel association findings near the genes TRANK1 ( LBA1 ), LMAN2L and PTGFR . In phase I, the most significant single nucleotide polymorphism (SNP), rs9834970 near TRANK1 , was significant at the P =2.4 × 10 −11 level, with no heterogeneity. Supportive evidence for prior association findings near ANK3 and a locus on chromosome 3p21.1 was also observed. The phase II results were similar, although the heterogeneity test became significant for several SNPs. On the basis of these results and other established risk loci, we used the method developed by Park et al. to estimate the number, and the effect size distribution, of BD risk loci that could still be found by GWAS methods. We estimate that >63 000 case–control samples would be needed to identify the ∼105 BD risk loci discoverable by GWAS, and that these will together explain <6% of the inherited risk. These results support previous GWAS findings and identify three new candidate genes for BD. Further studies are needed to replicate these findings and may potentially lead to identification of functional variants. Sample size will remain a limiting factor in the discovery of common alleles associated with BD.
Association of DISC1 and TSNAX genes and affective disorders in the depression case–control (DeCC) and bipolar affective case–control (BACCS) studies
The gene known as Disrupted-in-Schizophrenia-1, DISC1 , was originally discovered in a large family, in which it also co-segregated with bipolar affective disorder (BD) and with major depressive disorder (MDD). The TSNAX (Translin-associated factor X) gene, located immediately upstream of DISC1 , has also been suggested as a candidate gene in relation to psychiatric illness, as one transcript resulting from intergenic splicing encodes a novel TSNAX–DISC1 fusion protein. We explored the TSNAX – DISC1 gene region for an association with BD and MDD in a sample of 1984 patients (1469 MDD, 515 BD) and 1376 ethnically matched controls. Eight single nucleotide polymorphisms (SNPs) within the TSNAX–DISC1 region (rs766288, rs3738401, rs2492367, rs6675281, rs12133766, rs1000731, rs7546310 and rs821597) were investigated using the SNPlex Genotyping System. We found a significant allelic and genotypic association of the TSNAX–DISC1 gene region with BD, whereas a haplotypic association was found for both BD and MDD. Therefore, our results suggest an association between the TSNAX–DISC1 region and both forms of affective disorders, and support the hypothesis that a portion of the genotypic overlap between schizophrenia and affective disorders is attributable to this gene.
Population-based linkage analysis of schizophrenia and bipolar case–control cohorts identifies a potential susceptibility locus on 19q13
Population-based linkage analysis is a new method for analysing genomewide single nucleotide polymorphism ( SNP ) genotype data in case–control samples, which does not assume a common disease, common variant model. The genome is scanned for extended segments that show increased identity-by-descent sharing within case–case pairs, relative to case–control or control–control pairs. The method is robust to allelic heterogeneity and is suited to mapping genes which contain multiple, rare susceptibility variants of relatively high penetrance. We analysed genomewide SNP datasets for two schizophrenia case–control cohorts, collected in Aberdeen (461 cases, 459 controls) and Munich (429 cases, 428 controls). Population-based linkage testing must be performed within homogeneous samples and it was therefore necessary to analyse the cohorts separately. Each cohort was first subjected to several procedures to improve genetic homogeneity, including identity-by-state outlier detection and multidimensional scaling analysis. When testing only cases who reported a positive family history of major psychiatric disease, consistent with a model of strongly penetrant susceptibility alleles, we saw a distinct peak on chromosome 19q in both cohorts that appeared in meta-analysis ( P =0.000016) to surpass the traditional level for genomewide significance for complex trait linkage. The linkage signal was also present in a third case–control sample for familial bipolar disorder, such that meta-analysing all three datasets together yielded a linkage P =0.0000026. A model of rare but highly penetrant disease alleles may be more applicable to some instances of major psychiatric diseases than the common disease common variant model, and we therefore suggest that other genome scan datasets are analysed with this new, complementary method.
Estimating the heritability of reporting stressful life events captured by common genetic variants
Although usually thought of as external environmental stressors, a significant heritable component has been reported for measures of stressful life events (SLEs) in twin studies. Method We examined the variance in SLEs captured by common genetic variants from a genome-wide association study (GWAS) of 2578 individuals. Genome-wide complex trait analysis (GCTA) was used to estimate the phenotypic variance tagged by single nucleotide polymorphisms (SNPs). We also performed a GWAS on the number of SLEs, and looked at correlations between siblings. A significant proportion of variance in SLEs was captured by SNPs (30%, p = 0.04). When events were divided into those considered to be dependent or independent, an equal amount of variance was explained for both. This 'heritability' was in part confounded by personality measures of neuroticism and psychoticism. A GWAS for the total number of SLEs revealed one SNP that reached genome-wide significance (p = 4 × 10-8), although this association was not replicated in separate samples. Using available sibling data for 744 individuals, we also found a significant positive correlation of R 2 = 0.08 in SLEs (p = 0.03). These results provide independent validation from molecular data for the heritability of reporting environmental measures, and show that this heritability is in part due to both common variants and the confounding effect of personality.
Family history of depression is associated with younger age of onset in patients with recurrent depression
Genetic epidemiology data suggest that younger age of onset is associated with family history (FH) of depression. The present study tested whether the presence of FH for depression or anxiety in first-degree relatives determines younger age of onset for depression. A sample of 1022 cases with recurrent major depressive disorder (MDD) was recruited at the Max Planck Institute and at two affiliated hospitals. Patients were assessed using the Schedules for Clinical Assessment in Neuropsychiatry and questionnaires including demographics, medical history, questions on the use of alcohol and tobacco, personality traits and life events. Survival analysis and the Cox proportional hazard model were used to determine whether FH of depression signals earlier age of onset of depression. Patients who reported positive FH had a significantly earlier age of onset than patients who did not report FH of depression (log-rank=48, df=1, p<0.0001). The magnitude of association of FH varies by age of onset, with the largest estimate for MDD onset before age 20 years (hazard ratio=2.2, p=0.0009), whereas FH is not associated with MDD for onset after age 50 years (hazard ratio=0.89, p=0.5). The presence of feelings of guilt, anxiety symptoms and functional impairment due to depressive symptoms appear to characterize individuals with positive FH of depression. FH of depression contributes to the onset of depression at a younger age and may affect the clinical features of the illness.
Childhood Inattention and Dysphoria and Adult Obesity Associated with the Dopamine D4 receptor Gene in Overeating Women with Seasonal Affective Disorder
There is significant evidence that altered dopamine activity plays a role in seasonal affective disorder (SAD). The current study examined three separate genetic hypotheses for SAD related to the 7-repeat allele (7R) of the dopamine-4 receptor gene (DRD4), a variant associated with decreased affinity for dopamine. We examined the possible contribution of 7R to the overall expression of SAD, attention deficit disorder (ADD) comorbidity, and body weight regulation. As part of an ongoing genetic study of increased eating behavior and mood in female subjects, 108 women with winter SAD and carbohydrate craving/weight gain were administered the Wender-Utah Rating Scale to measure childhood ADD symptomatology, and a questionnaire to assess maximal lifetime body mass index (BMI). To test for an association between 7R and the categorical diagnosis of SAD, the transmission disequilibrium test (TDT) was used in a subsample of probands providing familial DNA. Standard parametric tests were used to compare childhood ADD symptoms and maximal lifetime BMI across the two genotypic groups defined by the presence or absence of 7R. The TDT found no initial evidence for an association between 7R and the categorical diagnosis of SAD. However, 7R carriers reported significantly greater inattention and dysphoria in childhood ( p =0.01 and 0.001, respectively) and a higher maximal lifetime BMI ( p =0.007) than did probands without this allele. Furthermore, excluding probands with extreme obesity (maximal BMI >40), a strong correlation was found linking childhood inattentive symptoms and maximal lifetime BMI ( r =0.35, p =0.001). In overeating women with SAD, the 7R allele of DRD4 may be associated with a unique developmental trajectory characterized by attentional deficits and dysphoria in childhood and mild to moderate obesity in adulthood. This developmental course may reflect different manifestations of the same underlying vulnerability related to central dopamine dysfunction. Given the possibility of population stratification when studying genotype/phenotype relationships, future use of genomic controls and replication of our findings in other overeating and/or ADD populations are needed to confirm these initial results.
Dopamine D4 receptor and tyrosine hydroxylase genes in bipolar disorder: evidence for a role of DRD4
The involvement of the mesocorticolimbic dopamine system in behaviors that are compromised in patients with mood disorder has led to the investigation of dopamine system genes as candidates for bipolar disorder. In particular, the functional VNTRs in the exon III of the dopamine D4 (DRD4) and in intron I of the tyrosine hydroxylase (TH) genes have been investigated in numerous association studies that have produced contrasting results. Likewise, linkage studies in multiplex bipolar families have shown both positive and negative results for markers in close proximity to DRD4 and TH on 11p15.5. We performed a linkage disequilibrium analysis of the DRD4 and TH VNTRs in a sample of 145 nuclear families comprised of DSM-IV bipolar probands and their biological parents. An excess of transmissions and non transmissions was observed for the DRD4 4- and 2-repeat alleles respectively. The biased transmission showed a parent of origin effect (POE) since it was derived almost exclusively from the maternal meiosis (4-repeat allele maternally transmitted 40 times vs 20 times non-transmitted; chi(2) = 6.667; df = 1; P = 0.009; while paternally transmitted 26 times vs 21 times non-transmitted; chi(2) = 0.531; df = 1; P = 0.46). The analysis of TH did not reveal biased transmission of intron I VNTR alleles. Although replication of our study is necessary, the fact that DRD4 exhibit POE and is located on 11p15.5, in close proximity to a cluster of imprinted genes, suggests that genomic imprinting may be operating in bipolar disorder.