Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
45 result(s) for "Muis, Sanne"
Sort by:
Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st Century
Global models of tide, storm surge, and wave setup are used to obtain projections of episodic coastal flooding over the coming century. The models are extensively validated against tide gauge data and the impact of uncertainties and assumptions on projections estimated in detail. Global “hotspots” where there is projected to be a significant change in episodic flooding by the end of the century are identified and found to be mostly concentrated in north western Europe and Asia. Results show that for the case of, no coastal protection or adaptation, and a mean RCP8.5 scenario, there will be an increase of 48% of the world’s land area, 52% of the global population and 46% of global assets at risk of flooding by 2100. A total of 68% of the global coastal area flooded will be caused by tide and storm events with 32% due to projected regional sea level rise.
Exploring deep learning capabilities for surge predictions in coastal areas
To improve coastal adaptation and management, it is critical to better understand and predict the characteristics of sea levels. Here, we explore the capabilities of artificial intelligence, from four deep learning methods to predict the surge component of sea-level variability based on local atmospheric conditions. We use an Artificial Neural Networks, Convolutional Neural Network, Long Short-Term Memory layer (LSTM) and a combination of the latter two (ConvLSTM), to construct ensembles of Neural Network (NN) models at 736 tide stations globally. The NN models show similar patterns of performance, with much higher skill in the mid-latitudes. Using our global model settings, the LSTM generally outperforms the other NN models. Furthermore, for 15 stations we assess the influence of adding complexity more predictor variables. This generally improves model performance but leads to substantial increases in computation time. The improvement in performance remains insufficient to fully capture observed dynamics in some regions. For example, in the tropics only modelling surges is insufficient to capture intra-annual sea level variability. While we focus on minimising mean absolute error for the full time series, the NN models presented here could be adapted for use in forecasting extreme sea levels or emergency response.
Generation of a global synthetic tropical cyclone hazard dataset using STORM
Over the past few decades, the world has seen substantial tropical cyclone (TC) damages, with the 2017 Hurricanes Harvey, Irma and Maria entering the top-5 costliest Atlantic hurricanes ever. Calculating TC risk at a global scale, however, has proven difficult given the limited temporal and spatial information on TCs across much of the global coastline. Here, we present a novel database on TC characteristics on a global scale using a newly developed synthetic resampling algorithm we call STORM (Synthetic Tropical cyclOne geneRation Model). STORM can be applied to any meteorological dataset to statistically resample and model TC tracks and intensities. We apply STORM to extracted TCs from 38 years of historical data from IBTrACS to statistically extend this dataset to 10,000 years of TC activity. We show that STORM preserves the TC statistics as found in the original dataset. The STORM dataset can be used for TC hazard assessments and risk modeling in TC-prone regions.Measurement(s)cycloneTechnology Type(s)computational modeling techniqueFactor Type(s)year • basinSample Characteristic - Environmentclimate systemSample Characteristic - LocationEarth (planet)Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.11733585
A global reanalysis of storm surges and extreme sea levels
Extreme sea levels, caused by storm surges and high tides, can have devastating societal impacts. To effectively protect our coasts, global information on coastal flooding is needed. Here we present the first global reanalysis of storm surges and extreme sea levels (GTSR data set) based on hydrodynamic modelling. GTSR covers the entire world's coastline and consists of time series of tides and surges, and estimates of extreme sea levels. Validation shows that there is good agreement between modelled and observed sea levels, and that the performance of GTSR is similar to that of many regional hydrodynamic models. Due to the limited resolution of the meteorological forcing, extremes are slightly underestimated. This particularly affects tropical cyclones, which requires further research. We foresee applications in assessing flood risk and impacts of climate change. As a first application of GTSR, we estimate that 1.3% of the global population is exposed to a 1 in 100-year flood. Protection of coastlines from devastating flooding associated with sea-level extremes is impeded by a lack of continuous records. Here, the authors apply a hydrodynamic modelling approach and present the first reanalysis of tides, surges and extreme sea levels for the entire world's coastline.
Advancing global storm surge modelling using the new ERA5 climate reanalysis
This study examines the implications of recent advances in global climate modelling for simulating storm surges. Following the ERA-Interim (0.75° × 0.75°) global climate reanalysis, in 2018 the European Centre for Medium-range Weather Forecasts released its successor, the ERA5 (0.25° × 0.25°) reanalysis. Using the Global Tide and Surge Model, we analyse eight historical storm surge events driven by tropical—and extra-tropical cyclones. For these events we extract wind fields from the two reanalysis datasets and compare these against satellite-based wind field observations from the Advanced SCATterometer. The root mean squared errors in tropical cyclone wind speed reduce by 58% in ERA5, compared to ERA-Interim, indicating that the mean sea-level pressure and corresponding strong 10-m winds in tropical cyclones greatly improved from ERA-Interim to ERA5. For four of the eight historical events we validate the modelled storm surge heights with tide gauge observations. For Hurricane Irma, the modelled surge height increases from 0.88 m with ERA-Interim to 2.68 m with ERA5, compared to an observed surge height of 2.64 m. We also examine how future advances in climate modelling can potentially further improve global storm surge modelling by comparing the results for ERA-Interim and ERA5 against the operational Integrated Forecasting System (0.125° × 0.125°). We find that a further increase in model resolution results in a better representation of the wind fields and associated storm surges, especially for small size tropical cyclones. Overall, our results show that recent advances in global climate modelling have the potential to increase the accuracy of early-warning systems and coastal flood hazard assessments at the global scale.
Measuring compound flood potential from river discharge and storm surge extremes at the global scale
The interaction between physical drivers from oceanographic, hydrological, and meteorological processes in coastal areas can result in compound flooding. Compound flood events, like Cyclone Idai and Hurricane Harvey, have revealed the devastating consequences of the co-occurrence of coastal and river floods. A number of studies have recently investigated the likelihood of compound flooding at the continental scale based on simulated variables of flood drivers, such as storm surge, precipitation, and river discharges. At the global scale, this has only been performed based on observations, thereby excluding a large extent of the global coastline. The purpose of this study is to fill this gap and identify regions with a high compound flooding potential from river discharge and storm surge extremes in river mouths globally. To do so, we use daily time series of river discharge and storm surge from state-of-the-art global models driven with consistent meteorological forcing from reanalysis datasets. We measure the compound flood potential by analysing both variables with respect to their timing, joint statistical dependence, and joint return period. Our analysis indicates many regions that deviate from statistical independence and could not be identified in previous global studies based on observations alone, such as Madagascar, northern Morocco, Vietnam, and Taiwan. We report possible causal mechanisms for the observed spatial patterns based on existing literature. Finally, we provide preliminary insights on the implications of the bivariate dependence behaviour on the flood hazard characterisation using Madagascar as a case study. Our global and local analyses show that the dependence structure between flood drivers can be complex and can significantly impact the joint probability of discharge and storm surge extremes. These emphasise the need to refine global flood risk assessments and emergency planning to account for these potential interactions.
Dependence between high sea-level and high river discharge increases flood hazard in global deltas and estuaries
When river and coastal floods coincide, their impacts are often worse than when they occur in isolation; such floods are examples of 'compound events'. To better understand the impacts of these compound events, we require an improved understanding of the dependence between coastal and river flooding on a global scale. Therefore, in this letter, we: provide the first assessment and mapping of the dependence between observed high sea-levels and high river discharge for deltas and estuaries around the globe; and demonstrate how this dependence may influence the joint probability of floods exceeding both the design discharge and design sea-level. The research was carried out by analysing the statistical dependence between observed sea-levels (and skew surge) from the GESLA-2 dataset, and river discharge using gauged data from the Global Runoff Data Centre, for 187 combinations of stations across the globe. Dependence was assessed using Kendall's rank correlation coefficient (τ) and copula models. We find significant dependence for skew surge conditional on annual maximum discharge at 22% of the stations studied, and for discharge conditional on annual maximum skew surge at 36% of the stations studied. Allowing a time-lag between the two variables up to 5 days, we find significant dependence for skew surge conditional on annual maximum discharge at 56% of stations, and for discharge conditional on annual maximum skew surge at 54% of stations. Using copula models, we show that the joint exceedance probability of events in which both the design discharge and design sea-level are exceeded can be several magnitudes higher when the dependence is considered, compared to when independence is assumed. We discuss several implications, showing that flood risk assessments in these regions should correctly account for these joint exceedance probabilities.
The effect of surge on riverine flood hazard and impact in deltas globally
Current global riverine flood risk studies assume a constant mean sea level boundary. In reality high sea levels can propagate up a river, impede high river discharge, thus leading to elevated water levels. Riverine flood risk in deltas may therefore be underestimated. This paper presents the first global scale assessment of the joint influence of riverine and coastal drivers of flooding in deltas. We show that if storm surge is ignored, flood depths are significantly underestimated for 9.3% of the expected annual population exposed to riverine flooding. The assessment is based on extreme water levels at 3433 river mouth locations as modeled by a state-of-the-art global river routing model, forced with a multi-model runoff ensemble and bounded by dynamic sea level conditions derived from a global tide and surge reanalysis. We first classified the drivers of riverine flooding at each location into four classes: surge-dominant, discharge-dominant, compound-dominant or insignificant. We then developed a model experiment to quantify the effect of surge on flood hazard and impacts. Drivers of riverine flooding are compound-dominant at 19.7% of the locations analyzed, discharge-dominant at 69.2%, and surge-dominant at 7.8%. Compared to locations with either surge- or discharge-dominant flood drivers, locations with compound-dominant flood drivers generally have larger surge extremes and are located in basins with faster discharge response and/or flat topography. Globally, surge exacerbates 1-in-10 years flood levels at 64.0% of the locations analyzed, with a mean increase of 11 cm. While this increase is generally larger at locations with compound- or surge-dominant flood drivers, flood levels also increase at locations with discharge-dominant flood drivers. This study underlines the importance of including dynamic downstream sea level boundaries in (global) riverine flood risk studies.
Review article: Natural hazard risk assessments at the global scale
Since 1990, natural hazards have led to over 1.6 million fatalities globally, and economic losses are estimated at an average of around USD 260–310 billion per year. The scientific and policy communities recognise the need to reduce these risks. As a result, the last decade has seen a rapid development of global models for assessing risk from natural hazards at the global scale. In this paper, we review the scientific literature on natural hazard risk assessments at the global scale, and we specifically examine whether and how they have examined future projections of hazard, exposure, and/or vulnerability. In doing so, we examine similarities and differences between the approaches taken across the different hazards, and we identify potential ways in which different hazard communities can learn from each other. For example, there are a number of global risk studies focusing on hydrological, climatological, and meteorological hazards that have included future projections and disaster risk reduction measures (in the case of floods), whereas fewer exist in the peer-reviewed literature for global studies related to geological hazards. On the other hand, studies of earthquake and tsunami risk are now using stochastic modelling approaches to allow for a fully probabilistic assessment of risk, which could benefit the modelling of risk from other hazards. Finally, we discuss opportunities for learning from methods and approaches being developed and applied to assess natural hazard risks at more continental or regional scales. Through this paper, we hope to encourage further dialogue on knowledge sharing between disciplines and communities working on different hazards and risk and at different spatial scales.
A High-Resolution Global Dataset of Extreme Sea Levels, Tides, and Storm Surges, Including Future Projections
The world’s coastal areas are increasingly at risk of coastal flooding due to sea-level rise. We present a novel global dataset of extreme sea levels, the Coastal Dataset for the Evaluation of Climate Impact (CoDEC), which can be used to accurately map the impact of climate change on coastal regions around the world. The third generation Global Tide and Surge Model, with a coastal resolution of 2.5 km (1.25 km in Europe), was used to simulate extreme sea levels for the ERA5 climate reanalysis from 1979 to 2017, as well as for future climate scenarios from 2040 to 2100. The validation against observed sea levels demonstrated a good performance, and the annual maxima had a mean bias of -0.04 m, which is 50% lower than the mean bias of the previous GTSR dataset. By the end of the century (2071-2100), it is projected that the 1 in 10-year water levels will have increased 0.34 m on average for RCP4.5, while some locations may experience increases of up to 0.5 m. The change in return levels is largely driven by sea-level rise, although at some locations changes in storms surges and interaction with tides amplify the impact of sea-level rise with changes up to 0.2 m. By presenting an application of the CoDEC dataset to the city of Copenhagen, we demonstrate how climate impact indicators derived from simulation can contribute to an understanding of climate impact on a local scale. Moreover, the CoDEC output locations are designed to be used as boundary conditions for regional models, and we envisage that they will be used for dynamic downscaling.