Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
34 result(s) for "Mukai, Hidefumi"
Sort by:
Macrocyclic peptide-based inhibition and imaging of hepatocyte growth factor
Activation of hepatocyte growth factor (HGF) by proteolytic processing is triggered in cancer microenvironments, and subsequent signaling through the MET receptor is involved in cancer progression. However, the structure of HGF remains elusive, and few small/medium-sized molecules can modulate HGF. Here, we identified HiP-8, a macrocyclic peptide consisting of 12 amino acids, which selectively recognizes active HGF. Biochemical analysis and real-time single-molecule imaging by high-speed atomic force microscopy demonstrated that HiP-8 restricted the dynamic domains of HGF into static closed conformations, resulting in allosteric inhibition. Positron emission tomography using HiP-8 as a radiotracer enabled noninvasive visualization and simultaneous inhibition of HGF–MET activation status in tumors in a mouse model. Our results illustrate the conformational change in proteolytic activation of HGF and its detection and inhibition by a macrocyclic peptide, which may be useful for diagnosis and treatment of cancers. A potent inhibitor for hepatocyte growth factor was identified that utilizes an allosteric mode of inhibition revealed by atomic force microscopy imaging. The inhibitor could be used for positron emission tomography imaging of mouse tumors.
Stability Study of mRNA-Lipid Nanoparticles Exposed to Various Conditions Based on the Evaluation between Physicochemical Properties and Their Relation with Protein Expression Ability
Lipid nanoparticles (LNPs) are currently in the spotlight as delivery systems for mRNA therapeutics and have been used in the Pfizer/BioNTech and Moderna COVID-19 vaccines. mRNA-LNP formulations have been indicated to require strict control, including maintenance at fairly low temperatures during their transport and storage. Since it is a new pharmaceutical modality, there is a lack of information on the systematic investigation of how storage and handling conditions affect the physicochemical properties of mRNA-LNPs and their protein expression ability. In this study, using the mRNA-LNPs with standard composition, we evaluated the effects of temperature, cryoprotectants, vibration, light exposure, and syringe aspiration from the vials on the physicochemical properties of nanoparticles in relation to their in vitro/in vivo protein expression ability. Among these factors, storage at −80 °C without a cryoprotectant caused a decrease in protein expression, which may be attributed to particle aggregation. Exposure to vibration and light also caused similar changes under certain conditions. Exposure to these factors can occur during laboratory and hospital handling. It is essential to have sufficient knowledge of the stability of mRNA-LNPs in terms of their physical properties and protein expression ability at an early stage to ensure reproducible research and development and medical care.
Development of an apolipoprotein E mimetic peptide-lipid conjugate for efficient brain delivery of liposomes
Liposomes are versatile carriers that can encapsulate various drugs; however, for delivery to the brain, they must be modified with a targeting ligand or other modifications to provide blood-brain barrier (BBB) permeability, while avoiding rapid clearance by reticuloendothelial systems through polyethylene glycol (PEG) modification. BBB-penetrating peptides act as brain-targeting ligands. In this study, to achieve efficient brain delivery of liposomes, we screened the functionality of eight BBB-penetrating peptides reported previously, based on high-throughput quantitative evaluation methods with in vitro BBB permeability evaluation system using Transwell, in situ brain perfusion system, and others. For apolipoprotein E mimetic tandem dimer peptide (ApoEdp), which showed the best brain-targeting and BBB permeability in the comparative evaluation of eight peptides, its lipid conjugate with serine-glycine (SG) 5 spacer (ApoEdp-SG-lipid) was newly synthesized and ApoEdp-modified PEGylated liposomes were prepared. ApoEdp-modified PEGylated liposomes were effectively associated with human brain capillary endothelial cells via the ApoEdp sequence and permeated the membrane in an in vitro BBB model. Moreover, ApoEdp-modified PEGylated liposomes accumulated in the brain 3.9-fold higher than PEGylated liposomes in mice. In addition, the ability of ApoEdp-modified PEGylated liposomes to localize beyond the BBB into the brain parenchyma in mice was demonstrated via three-dimensional imaging with tissue clearing. These results suggest that ApoEdp-SG-lipid modification is an effective approach for endowing PEGylated liposomes with the brain-targeting ability and BBB permeability.
Investigation of enhanced intracellular delivery of nanomaterials modified with novel cell-penetrating zwitterionic peptide-lipid derivatives
Functionalized drug delivery systems have been investigated to improve the targetability and intracellular translocation of therapeutic drugs. We developed high functionality and quality lipids that met unique requirements, focusing on the quality of functional lipids for the preparation of targeted nanoparticles using microfluidic devices. While searching for a lipid with high solubility and dispersibility in solvents, which is one of the requirements, we noted that KK-(EK) 4 -lipid imparts nonspecific cellular association to polyethylene glycol (PEG)-modified (PEGylated) liposomes, such as cell-penetrating peptides (CPPs). We investigated whether KK-(EK) 4 -lipid, which has a near-neutral charge, is a novel CPP-modified lipid that enhances the intracellular translocation of nanoparticles. However, the cellular association mechanism of KK-(EK) 4 -lipid is unknown. Therefore, we synthesized (EK) n -lipid derivatives based on the sequence of KK-(EK) 4 -lipid and determined the sequence sites involved in cellular association. In addition, KK-(EK) 4 -lipid was applied to extracellular vesicles (EVs) and mRNA encapsulated lipid nanoparticles (mRNA-LNPs). KK-(EK) 4 -lipid-modified EVs and mRNA-LNPs showed higher cellular association and in vitro protein expression, respectively, compared to unmodified ones. We elucidated KK-(EK) 4 -lipid to have potential for applicability in the intracellular delivery of liposomes, EVs, and mRNA-LNPs.
Implicit preferences and language performance: using a paper-and-pencil Implicit Association Test to predict English engagement and performance
The present study examined the validity of the paper-and-pencil Implicit Association Test (IAT), and whether implicit preferences for English, as assessed by the paper-and-pencil IAT, can predict engagement, which indicates the degree of involvement and performance in English. Participants included university students ( N  = 322) who responded to the paper-and-pencil IAT and a self-report questionnaire assessing explicit preference, that is, the degree to which they perceive that they like learning English. The results indicated a small but significant correlation between implicit and explicit preferences. Female participants showed a more positive implicit preference for English than male participants. Additionally, students majoring in foreign languages showed a more positive implicit preference for English than non-foreign language majors. These results demonstrate the validity of the paper-and-pencil IAT. They also show that implicit preferences influence actual English test performance and that this relationship is mediated by engagement.
Targeted Delivery of VEGF-siRNA to Glioblastoma Using Orientation-Controlled Anti-PD-L1 Antibody-Modified Lipid Nanoparticles
Background/Objectives: Glioblastoma (GBM) is an aggressive primary brain tumor with limited therapeutic options despite multimodal treatment. Small interfering RNA (siRNA)-based therapeutics can silence tumor-promoting genes, but achieving efficient and tumor-specific delivery remains challenging. Lipid nanoparticles (LNPs) are promising siRNA carriers; however, conventional antibody conjugation can impair antigen recognition and complicate manufacturing. This study aimed to establish a modular Fc-binding peptide (FcBP)-mediated post-insertion strategy to enable PD-L1-targeted delivery of VEGF-siRNA via LNPs for GBM therapy. Methods: Preformed VEGF-siRNA-loaded LNPs were functionalized with FcBP–lipid conjugates, enabling non-covalent anchoring of anti-PD-L1 antibodies through Fc interactions. Particle characteristics were analyzed using dynamic light scattering and encapsulation efficiency assays. Targeted cellular uptake and VEGF gene silencing were evaluated in PD-L1-positive GL261 glioma cells. Anti-tumor efficacy was assessed in a subcutaneous GL261 tumor model following repeated intratumoral administration using tumor volume and bioluminescence imaging as endpoints. Results: FcBP post-insertion preserved LNP particle size (125.2 ± 1.3 nm), polydispersity, zeta potential, and siRNA encapsulation efficiency. Anti-PD-L1–FcBP-LNPs significantly enhanced cellular uptake (by ~50-fold) and VEGF silencing in PD-L1-expressing GL261 cells compared to controls. In vivo, targeted LNPs reduced tumor volume by 65% and markedly suppressed bioluminescence signals without inducing weight loss. Final tumor weight was reduced by 63% in the anti-PD-L1–FcBP–LNP group (656.9 ± 125.4 mg) compared to the VEGF-siRNA LNP group (1794.1 ± 103.7 mg). The FcBP-modified LNPs maintained antibody orientation and binding activity, enabling rapid functionalization with targeting antibodies. Conclusions: The FcBP-mediated post-insertion strategy enables site-specific, modular antibody functionalization of LNPs without compromising physicochemical integrity or antibody recognition. PD-L1-targeted VEGF-siRNA delivery demonstrated potent, selective anti-tumor effects in GBM murine models. This platform offers a versatile approach for targeted nucleic acid therapeutics and holds translational potential for treating GBM.
Novel strategy of liver cancer treatment with modified antisense oligonucleotides targeting human vasohibin‐2
Vasohihibin‐2 (VASH2) is a homolog of vasohibin‐1 (VASH1) and is overexpressed in various cancers. Vasohihibin‐2 acts on both cancer cells and cancer microenvironmental cells. Previous analyses have shown that VASH2 promotes cancer progression and abrogation of VASH2 results in significant anticancer effects. We therefore propose VASH2 to be a practical molecular target for cancer treatment. Modifications of antisense oligonucleotide (ASO) such as bridged nucleic acids (BNA)‐based modification increases the specificity and stability of ASO, and are now applied to the development of a number of oligonucleotide‐based drugs. Here we designed human VASH2‐ASOs, selected an optimal one, and developed 2′,4′‐BNA‐based VASH2‐ASO. When systemically administered, naked 2′,4′‐BNA‐based VASH2‐ASO accumulated in the liver and showed its gene‐silencing activity. We then examined the effect of 2′,4′‐BNA‐based VASH2‐ASO in liver cancers. Intraperitoneal injection of naked 2′,4′‐BNA‐based VASH2‐ASO exerted a potent antitumor effect on orthotopically inoculated human hepatocellular carcinoma cells. The same manipulation also showed potent antitumor activity on the splenic inoculation of human colon cancer cells for liver metastasis. These results provide a novel strategy for the treatment of primary as well as metastatic liver cancers by using modified ASOs targeting VASH2. We designed 2′,4′‐bridged nucleic acids‐based vasohihibin‐2 (VASH2)‐antisense oligonucleotide, showed its localization in the liver after systemic administration, and determined its anticancer effect in an animal model of liver cancer.
Induction of liver-resident memory T cells and protection at liver-stage malaria by mRNA-containing lipid nanoparticles
Recent studies have suggested that CD8 + liver-resident memory T (T RM ) cells are crucial in the protection against liver-stage malaria. We used liver-directed mRNA-containing lipid nanoparticles (mRNA-LNPs) to induce liver T RM cells in a murine model. Single-dose intravenous injections of ovalbumin mRNA-LNPs effectively induced antigen-specific cytotoxic T lymphocytes in a dose-dependent manner in the liver on day 7. T RM cells (CD8 + CD44 hi CD62L lo CD69 + KLRG1 - ) were induced 5 weeks after immunization. To examine the protective efficacy, mice were intramuscularly immunized with two doses of circumsporozoite protein mRNA-LNPs at 3-week intervals and challenged with sporozoites of Plasmodium berghei ANKA. Sterile immunity was observed in some of the mice, and the other mice showed a delay in blood-stage development when compared with the control mice. mRNA-LNPs therefore induce memory CD8 + T cells that can protect against sporozoites during liver-stage malaria and may provide a basis for vaccines against the disease.
Suppression of Peritoneal Fibrosis by Sonoporation of Hepatocyte Growth Factor Gene-Encoding Plasmid DNA in Mice
Gene therapy is expected to be used for the treatment of peritoneal fibrosis, which is a serious problem associated with long-term peritoneal dialysis. Hepatocyte growth factor (HGF) is a well-known anti-fibrotic gene. We developed an ultrasound and nanobubble-mediated (sonoporation) gene transfection system, which selectively targets peritoneal tissues. Thus, we attempted to treat peritoneal fibrosis by sonoporation-based human HGF (hHGF) gene transfection in mice. To prepare a model of peritoneal fibrosis, mice were intraperitoneally injected with chlorhexidine digluconate. We evaluated the preventive and curative effects of sonoporation-based hHGF transfection by analyzing the following factors: hydroxyproline level, peritoneum thickness, and the peritoneal equilibration test. The transgene expression characteristics of sonoporation were also evaluated using multicolor deep imaging. In early-stage fibrosis in mice, transgene expression by sonoporation was observed in the submesothelial layer. Sonoporation-based hHGF transfection showed not only a preventive effect but also a curative effect for early-stage peritoneal fibrosis. Sonoporation-based hHGF transfection may be suitable for the treatment of peritoneal fibrosis regarding the transfection characteristics of transgene expression in the peritoneum under fibrosis.
Blautia coccoides JCM1395T Achieved Intratumoral Growth with Minimal Inflammation: Evidence for Live Bacterial Therapeutic Potential by an Optimized Sample Preparation and Colony PCR Method
We demonstrate that Blautia coccoides JCM1395T has the potential to be used for tumor-targeted live bacterial therapeutics. Prior to studying its in vivo biodistribution, a sample preparation method for reliable quantitative analysis of bacteria in biological tissues was required. Gram-positive bacteria have a thick outer layer of peptidoglycans, which hindered the extraction of 16S rRNA genes for colony PCR. We developed the following method to solve the issue; the method we developed is as follows. The homogenates of the isolated tissue were seeded on agar medium, and bacteria were isolated as colonies. Each colony was heat-treated, crushed with glass beads, and further treated with restriction enzymes to cleave DNAs for colony PCR. With this method, Blautia coccoides JCM1395T and Bacteroides vulgatus JCM5826T were individually detected from tumors in mice intravenously receiving their mixture. Since this method is very simple and reproducible, and does not involve any genetic modification, it can be applied to exploring a wide range of bacterial species. We especially demonstrate that Blautia coccoides JCM1395T efficiently proliferate in tumors when intravenously injected into tumor-bearing mice. Furthermore, these bacteria showed minimal innate immunological responses, i.e., elevated serum tumor necrosis factor α and interleukin-6, similar to Bifidobacterium sp., which was previously studied as a therapeutic agent with a small immunostimulating effect.