Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
42 result(s) for "Mukumba, Patrick"
Sort by:
Potential of Wheat Straw for Biogas Production by Anaerobic Digestion in South Africa: A Review
Wheat straw (WS) is a promising substrate for biogas production by anaerobic digestion (AD) due to its high carbohydrate content. An estimated 0.603 million t yr−1 of WS are generated from wheat production systems in South Africa. This is equivalent to an energy potential of 11 PJ. Despite this, WS is still undervalued as a bioenergy resource in South Africa due to its structural complexity and low nitrogen content. WS disposal methods, such as use in livestock bedding, burning and burying into the soil, inter alia, are not sustainable and may contribute to global warming and climate change. The commercialization of the AD of WS needs to be further developed and promoted. Pre-treatment (i.e., physical, chemical, biological and hybrid methods) and anaerobic co-digestion (AcoD) are novel strategies that can support the conversion of WS into biogas and other value-added products. Current and future research should focus on optimizing pre-treatment and AcoD conditions towards industrialization of WS into valuable products. This paper focuses on the potential use of WS for biogas production in South Africa. The aim is to create information that will promote research and development, and encourage policy makers and stakeholders to participate and invest in WS biogas technology. Were WS biogas technology fully adopted, we believe that it would alleviate energy insecurity and environmental degradation, and sustain the livelihoods of citizens in South Africa.
Enhancing the Performance of Savonius Wind Turbines: A Review of Advances Using Multiple Parameters
The need to globalize and implement the fourth industrial revolution has led to increased interest in research on renewable energy harvesting equipment. Wind and solar have been the fastest growing sources of energy and have been used to reduce our dependency on fossil fuels for energy. The Savonius wind turbine is an attractive option for regions with high turbulence intensity and low wind speeds due to its advantages over other small-scale vertical-axis wind turbines. These advantages include its simple design, satisfactory performance at lower speeds, and ability to turn independent of the wind flow direction. However, Savonius wind turbines face several challenges. The most significant one being the negative torque generated during operation. This negative torque is caused by the interaction between the exhaust air and the returning blade, thus reducing efficiency, as the turbine has to overcome this additional force. To improve on the efficiency, various assessments and optimization techniques have been employed. These focus on the geometric parameters of the Savonius wind turbine as well as installation augmentation techniques. This article reviews and reports on several combinations of parametric performance-influencing adjustments and power augmentation techniques applied to Savonius wind turbines. The article concludes by proposing future research directions.
Valorization of Maize Stover into Biogas for Heat and Power Generation: A South African Perspective
Maize (Zea mays) is one of the most cultivated crops in South Africa, serving as a staple food, stock feed, and a key element in several industrial applications. It contributes significantly to the growth of the South African agricultural economy. The cultivation of maize generates a large amount of agricultural waste, mainly in the form of maize stover (MS), which encapsulates leaves, stalks, cobs, and husks. Approximately 5.15 metric tons (Mt) yr−1 of MS are generated in South Africa. This corresponds to an energy potential of 94 PJ. There is immense potential to surpass the annual yield of MS by 126% up to about 11.66 Mt yr−1 through practices such as zero tillage and improved agricultural production systems. MS may pose a serious threat to the environment if not managed in a sustainable and eco-friendly manner. Valorization of MS into biogas presents an excellent opportunity to effectively control biomass waste while contributing to renewable energy production and mitigating dependence on depleting fossil fuels. However, MS continues to be overlooked as a sustainable bioenergy resource due to its lignocellulosic structure. This study explores the potential of converting MS into biogas for heat and power generation, addressing both energy needs and waste management in South Africa. The purpose is to provide knowledge that will inform researchers, innovators, industrialists, policy makers, investors, and other key stakeholders interested in renewable energy systems. Collaborative efforts among multiple stakeholders are vital to leverage biogas as a technology to promote socio-economic development in South Africa.
Biogas Upgrading Approaches with Special Focus on Siloxane Removal—A Review
Biogas, a product of anaerobic digestion process that consists mainly of methane and carbon dioxide is a suitable alternative fuel if unwanted impurities are removed as they have a negative impact on the equipment. The most significant technologically troublesome trace compounds that must be removed are siloxanes since they are converted into silica on gas surface engines and turbines resulting in equipment damage. The quality of the gas is certainly improved by reducing the amount of impurities and the end use determines the extent of biogas cleaning needed. The major aim of this study was to compile information that can assist researchers or even designers in selecting a suitable technology to remove siloxanes. Siloxane removal definitely can be achieved using different methods and the effectiveness of each method relies on careful consideration of the characteristics of both biogas and siloxane, as well as the technological aspects of the method. Herein, we review on different cleaning techniques for siloxanes in raw biogas, the negative effects they have, their levels and technologies to reduce their concentrations. This review also incorporates the sources of the siloxanes, the progress to date on their removal and possible ways of regenerating adsorbents. The reviewed literature suggests that biogas upgrading technology should be promoted and encouraged especially in siloxane removal as it has detrimental effects on engines. The parameters and effectiveness of adsorption processes are discussed, and individual adsorbents are compared.
Rural energy poverty: An investigation into socioeconomic drivers and implications for off-grid households in the Eastern Cape Province, South Africa
Energy poverty is a significant barrier to sustainable development, limiting access to modern energy solutions and exacerbating socioeconomic inequalities in South Africa. This research identifies key socioeconomic factors contributing to energy poverty among off-grid households using the household-specific energy poverty line. A cross-sectional study was conducted using a well-structured questionnaire among 53 households. The findings reveal significant gender disparities, with female-headed households being more vulnerable to energy poverty, which continues to subject them to economic hardship and social marginalization. Additionally, while larger households generally face higher energy demands, they were found to be less likely to experience energy poverty. The findings also challenge the 'energy ladder hypothesis' by showing that education, while potentially enabling better energy awareness, does not guarantee improved energy access in off-grid areas due to infrastructural limitations. Social grant dependency was found to be strongly correlated with energy poverty, underscoring the inadequacy of income transfers in addressing the systemic barriers to energy access. The findings emphasize the need for multidimensional, gender-responsive policy interventions that address both infrastructural and socioeconomic barriers to energy access, particularly in rural South Africa. These insights are crucial for developing targeted interventions to alleviate energy poverty and foster sustainable development in off-grid communities.
Utilization of Biomass Waste Through Small-Scale Gasification Technology in the Eastern Cape Province in South Africa: Towards the Achievement of Sustainable Development Goal Number 7
Despite being resource-richly endowed with various energy sources, and despite the connection of 89.8% of the households to the grid in South Africa, the Eastern Cape province, as compared to other provinces, has the lowest level of grid connection of about 64.5%. Some of the rural poor households in the Eastern Cape province supplement their free basic electricity with unclean energy alternatives. Using unclean energy alternatives is not only detrimental to the environment and health of the people, but it is a sign of energy poverty and among the contributing factors to depesantization, deagrarianization, and deindustrialization which prolongs the underdevelopment in rural areas. Innovation in energy technologies is a key ingredient in meaningful rural development. The utilization of small-scale biomass gasification technologies can be a solution to the South African energy crisis in rural areas, and it is in line with sustainable development goal number 7, which is about ensuring access to affordable, reliable, sustainable, and modern energy for all. Alternative renewable energy sources cannot be ignored when dealing with the energy crises in South Africa. Renewable energy sources in the country include biomass, solar, wind, and hydropower. Despite its low utilization in the Eastern Cape province, small-scale biomass gasification technology remains pivotal in reducing energy crisis by producing electricity. However, the affordability of biomass gasification technology also plays a role in whether people will accept small-scale biomass gasification technology. The purpose of this paper is to determine the possibilities of using small-scale biomass gasification technology. This paper gives a comprehensive review of small-scale biomass gasification technology potential in the Eastern Cape province and the link between acceptance of small-scale gasification technology and affordability by evaluating the availability of biomass sources in the province and achievements with regards to small-scale biomass gasification. This paper also covers the impact of biomass gasification technology integration in the energy grid, what needs to be taken into consideration before its installation, its benefits and the barriers to its development in Eastern Cape province.
Biogas Valorisation to Biomethane for Commercialisation in South Africa: A Review
Biogas consists of mainly methane, as a source of energy, and impurities such as carbon dioxide, hydrogen sulphide, water, and siloxanes. These impurities, such as hydrogen sulphide, reduce the biogas energy content and corrode equipment that store, transport, or utilise biogas. Several reviews on upgrading biogas to biomethane have been published, but minimal focus has been put on upgrading biogas for commercialisation in South Africa. Thus, this study reviewed biogas upgrading techniques in South Africa to put together information on activities and experiences on biogas valorisation to enhance the chances for different stakeholders to learn and build on from local experiences. To capture all relevant information, literature from the past 10 years was retrieved from online databases and government, municipality, and companies’ websites and institutional repositories. The review covered the sorption, separation, and in situ techniques that are globally used for upgrading biogas. The status of the biogas sector and the upgrading activities that occur in the country with their cost, energy, and environmental impacts were given in detail. It is estimated that a total of 3 million Nm3d−1 of biogas can be produced in the country from biogas substrates. Thus, researchers and entrepreneurs are encouraged to collaborate to utilise the abundant resources used for biogas production to enhance the commercialisation of biomethane.
An Installed Hybrid Direct Expansion Solar Assisted Heat Pump Water Heater to Monitor and Modeled the Energy Factor of a University Students’ Accommodation
This paper focused on the performance monitoring and modeling of a 6.0 kW, 2000 L hybrid direct expansion solar assisted heat pump (DX-SAHP) water heater used for the production of hot water in a university students’ accommodation with 123 females. The data of total electrical energy consumed, volume of hot water consumed, ambient temperature, relative humidity, and solar irradiance were obtained from the data acquisition systems and analyzed in conjunction with the energy factor (EF) of the system. A multiple linear regression model was developed to predict the EF. The EF of the hybrid DX-SAHP water heater was determined from the summation of the coefficient of performance (COP) of the heat pump unit and the solar fraction (SF) of the solar collectors. The operations of the hybrid energy system were analyzed based on three phases (first phase from 00:00–08:00, second phase from 08:30–18:30, and third phase from 19:00–23:30) over 24 h for the entire monitoring period. The average EF of the hybrid energy system per day during the second phase of operation was 4.38, while the SF and COP were 0.697 and 3.683, respectively. The developed multiple linear regression model for the hybrid DX-SAHP water heater accurately predicted the determined EF.
Application of Fuzzy Logic Techniques in Solar Energy Systems: A Review
Fuzzy logic has been applied to a wide range of problems, including process control, object recognition, image and signal processing, prediction, classification, decision-making, optimization, and time series analysis. These apply to solar energy systems. Though experts in renewable energy prefer fuzzy logic techniques, their contribution to the decision-making process of solar energy systems lies in the possibility of illustrating risk factors and introducing the concepts of linguistic variables of data from solar energy applications. In solar energy systems, the primary beneficiaries and audience of the fuzzy logic techniques are solar energy policy makers, as it concerns decision-making models, ranking of criteria or weights, and assessment of the potential location of the installation of solar energy plants, depending on the case. In a real-world scenario, fuzzy logic allows easy and efficient controller configuration in a non-linear control system, such as a solar panel. This study attempts to review the role and contribution of fuzzy logic in solar energy based on its applications. The findings from the review revealed that the fuzzy logic application identifies and detects faults in solar energy systems as well as in the optimization of energy output and the location of solar energy plants. In addition, fuzzy model (predicting), hybrid model (simulating performance), and multi-criteria decision-making (MCDM) are components of fuzzy logic techniques. As the review indicated, these are useful as a solution to the challenges of solar energy systems. Importantly, the integration and incorporation of fuzzy logic and neural networks should be recommended for the efficient and effective performance of solar energy systems.
Advancement of Bioenergy Technology in South Africa
South Africa has been experiencing an energy crisis since 2007 and continues to the present. This has resulted in load-shedding (action to interrupt electricity supply to avoid excessive load on the generating plant). One way to address this problem is to further explore the potential and contribution of bioenergy through research conducted and implementing energy reports. Therefore, the study aims to provide the state of bioenergy and its contribution to the country’s economic sector and to enhance the replacement of fossil fuels with bioenergy resources and technology. A total blackout of 15,913 h has been experienced since 2014, according to the weekly system status report released by ESKOM. The power utility (Eskom) responsible for power generation and utility has attributed this problem to insufficient generation and capacity. Based on this, the country is embarking on solving this problem. Although the country is dominated by coal (fossil fuel), constituting 73.8% of the total energy supply, this poses a serious environmental risk and health hazard. Renewable energy is considered an alternative energy source, and its introduction and implementation look promising in reducing and solving the current energy crisis. With abundant renewable energy potential, representing 8.7% of the total energy supply, around 85% is bioenergy. This review’s findings revealed that bioenergy contributed mainly towards heat, and fuels admit other energy sources, which is recommended. Therefore, its deployment on a large scale is promising and possible. This study will guide and further encourage the deployment of bioenergy projects in South Africa.