Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
20
result(s) for
"Mukwevho, Emmanuel"
Sort by:
Oleanolic Acid and Its Derivatives: Biological Activities and Therapeutic Potential in Chronic Diseases
2017
The increasing demand for natural products as an alternative therapy for chronic diseases has encouraged research into the pharmacological importance of bioactive compounds from plants. Recently, there has been a surge of interest in the therapeutic potential of oleanolic acid (OA) in the prevention and management of chronic diseases. Oleanolic acid is a pentacyclic triterpenoid widely found in plants, including fruits and vegetables with different techniques and chromatography platforms being employed in its extraction and isolation. Several studies have demonstrated the potential therapeutic effects of OA on different diseases and their symptoms. Furthermore, oleanolic acid also serves as a framework for the development of novel semi-synthetic triterpenoids that could prove vital in finding therapeutic modalities for various ailments. There are recent advances in the design and synthesis of chemical derivatives of OA to enhance its solubility, bioavailability and potency. Some of these derivatives have also been therapeutic candidates in a number of clinical trials. This review consolidates and expands on recent reports on the biological effects of oleanolic acid from different plant sources and its synthetic derivatives as well as their mechanisms of action in in vitro and in vivo study models. This review suggests that oleanolic acid and its derivatives are important candidates in the search for alternative therapy in the treatment and management of chronic diseases.
Journal Article
Metabolomics: A Scoping Review of Its Role as a Tool for Disease Biomarker Discovery in Selected Non-Communicable Diseases
by
Ayeleso, Ademola Olabode
,
Aderemi, Adewale Victor
,
Oyedapo, Oluboade Oluokun
in
Alzheimer's disease
,
analytical tools
,
Animal models
2021
Metabolomics is a branch of ‘omics’ sciences that utilises a couple of analytical tools for the identification of small molecules (metabolites) in a given sample. The overarching goal of metabolomics is to assess these metabolites quantitatively and qualitatively for their diagnostic, therapeutic, and prognostic potentials. Its use in various aspects of life has been documented. We have also published, howbeit in animal models, a few papers where metabolomic approaches were used in the study of metabolic disorders, such as metabolic syndrome, diabetes, and obesity. As the goal of every research is to benefit humankind, the purpose of this review is to provide insights into the applicability of metabolomics in medicine vis-à-vis its role in biomarker discovery for disease diagnosis and management. Here, important biomarkers with proven diagnostic and therapeutic relevance in the management of disease conditions, such as Alzheimer’s disease, dementia, Parkinson’s disease, inborn errors of metabolism (IEM), diabetic retinopathy, and cardiovascular disease, are noted. The paper also discusses a few reasons why most metabolomics-based laboratory discoveries are not readily translated to the clinic and how these could be addressed going forward.
Journal Article
Ameliorative Potential of Hydroethanolic Leaf Extract of Parquetina nigrescens on d-Galactose-Induced Testicular Injury
2021
Background: There is an increasing need for botanicals to be used as an alternative and complementary medicine in the management of male infertility. Male infertility has been a major health/social challenge to people all over the world. This study, therefore, investigated the ameliorative potential of hydroethanolic leaf extract of Parquetina nigrescens (HELEPN) against d-galactose-induced testicular injury. Methods: Thirty male Wistar rats were randomly allotted into six groups (n = 5). Group I (Normal control), Group II (300 mg/kg b.w. d-galactose), Group III and IV (250 and 500 mg/kg b.w. HELEPN, respectively), Group V and VI (both received 300 mg/kg b.w. of d-galactose with 250 and 500 mg/kg b.w of HELEPN, respectively). d-galactose administration started two weeks prior to HELEPN treatment which lasted for six weeks. All assays were carried out using established protocols. Results: Administration of HELEPN at 250mg/kg and 500mg/kg concomitantly with d-galactose improved paired and relative testicular weights, levels of gonadotropins (LH and FSH) and testosterone, and poor sperm quality. HELEPN treatment reduced the levels of oxidative stress biomarkers (MDA, 8-OHDG, and AGEs) and inflammatory response (TNF-alpha and NO) to normal, as well as restoring the reduced activities of antioxidant enzymes (glutathione peroxidase, superoxide dismutase, and catalase). In addition, HELEPN treatment mitigated testicular DNA fragmentation and down-regulated caspase 3-activities. HELEPN at 500 mg/kg was observed to have the greatest ameliorative effect. Conclusion: HELEPN protects against d-galactose-induced testicular injury through antioxidative, anti-inflammatory, and antiapoptotic mechanisms.
Journal Article
Eggplant (Solanum spp.) Fruits Dietary Polyphenols Upregulate the Expression of Glucose Transporter Protein in Palmitate-Induced Diabetic Cell Line C2C12
by
Oboh, Ganiyu
,
Ayeleso, Ademola O.
,
Ibukun, Emmanuel O.
in
Animals
,
Antidiabetics
,
Antioxidants
2025
Studies utilizing cell-based systems to investigate plant-based diets for diabetes management are gaining attention due to the adverse effects associated with commercially available drugs. However, the molecular mechanisms underlying the anti-diabetic effects of specific plant-derived products remain inadequately explored. The major aim of our study was to elucidate the molecular mechanisms by which bioactive compounds in the fruit of Solanum spp. influence key proteins associated with type 2 diabetes. The expressions of genes such as glucose transporter protein 4 (GLUT4), myocyte enhancer factor-2 (MEF-2A), and nuclear respiratory factor-1 (NRF-1) were investigated in a palmitate-induced C2C12 cell model of type 2 diabetes mellitus. The structures of these proteins were retrieved from the protein database, while bioactive compounds previously identified in Solanum spp. were obtained from PubChem site. Drug-likeness properties of these compounds (ligands) were assessed. The docked protein-ligand complexes were further analyzed using the Protein-Ligand Profiler web server. Our results showed that the studied compounds from Solanum spp. profoundly upregulated GLUT4 expression (9–19-fold increase) in the C2C12 cell line, thus surpassing the effects of the standard anti-diabetic drug metformin. Additionally, activities of antioxidant enzymes catalase, superoxide dismutase, and glutathione peroxidase were elevated. Molecular docking showed that rutin, an abundant flavonoid from Solanum spp., had the highest binding affinity for the active sites of the target proteins. These findings provide new mechanistic insight into the anti-diabetic effects of Solanum spp., primarily due to its high rutin content, which plays a major role in the plant’s glucose-regulating and antioxidant actions. Our findings underscore the potential use of Solanum spp. as an affordable functional food for managing type 2 diabetes, especially in developing countries with limited resources for purchasing drugs. Although promising, our findings should be further validated by clinical studies.
Journal Article
Aqueous-Methanol Extracts of Orange-Fleshed Sweet Potato (Ipomoea batatas) Ameliorate Oxidative Stress and Modulate Type 2 Diabetes Associated Genes in Insulin Resistant C2C12 Cells
by
Ayeleso, Taiwo Betty
,
Mukwevho, Emmanuel
,
Ramachela, Khosi
in
Antioxidants
,
Diabetes
,
Glucose
2018
Edible plants such as sweet potato are sources of natural antioxidants that can be exploited in the management and treatment of insulin resistance. This present study investigated the effects of the extracts of an orange-fleshed sweet potato on oxidative stress biomarkers (glutathione status and lipid peroxidation) and activities of antioxidant enzymes (catalase, CAT and glutathione peroxidase, GPx) in palmitate-induced insulin resistant C2C12 cells. The intracellular antioxidant status of the cells was also measured using Ferric reducing antioxidant power (FRAP) and Trolox equivalent antioxidant capacity (TEAC) assays. Furthermore, this study determined the effect of the extracts on the regulation of some type 2 diabetes associated genes; glucose transporter 4 (glut4), Nuclear respiratory factor 1 (nrf1), Myocyte enhanced factor 2A (mef2a), Carnitine palmitoyltransferase 1 (cpt1) and Acetyl-CoA carboxylase 2 (acc2). The results showed a significant (p < 0.05) increase in intracellular GSH level, a significant reduction in the level of malonaldehyde and a significant improvement in the intracellular antioxidant status upon treatment of the insulin resistant cells with the extracts. The extracts were also able to positively modulate the expression levels of the type 2 diabetes associated genes. On the other hand, HPLC-MS analysis of the extracts showed the presence of polyphenols which could have contributed to the bioactivity of the extracts through their antioxidant effects.
Journal Article
A Study on Neonatal Intake of Oleanolic Acid and Metformin in Rats (Rattus norvegicus) with Metabolic Dysfunction: Implications on Lipid Metabolism and Glucose Transport
by
Erlwanger, Kennedy
,
Molepo, Mmahiine
,
Nyakudya, Trevor
in
Animals
,
Animals, Newborn
,
Biological Transport - drug effects
2018
Metabolic syndrome, a cluster of different disorders which include diabetes, obesity and cardiovascular diseases, is a global epidemic that is growing at an alarming rate. The origins of disease can be traced back to early developmental stages of life. This has increased mortalities and continues to reduce life expectancies of individuals across the globe. The aim of this study was to investigate the sub-acute and long term effects of neonatal oral administration of oleanolic acid and metformin on lipids (free fatty acids, FFAs) and genes associated with lipid metabolism and glucose transport using a neonatal rat experimental model. In the first study, seven days old pups were randomly grouped into control—distilled water (DW); oleanolic acid (60 mg/kg), metformin (500 mg/kg), high fructose diet (20% w/v, HF), oleanolic acid (OA) + high fructose diet (OA + HF), and Metformin + high fructose diet (MET + HF) groups. The pups were treated for 7 days, and then terminated on postnatal day (PD) 14. In the second study, rat pups were initially treated similarly to study 1 and weaned onto normal rat chow and plain drinking water on PD 21 till they reached adulthood (PD112). Tissue and blood samples were collected for further analyses. Measurement of the levels of free fatty acids (FFAs) was done using gas chromatography-mass spectrometry. Quantitative polymerase chain reaction (qPCR) was used to analyze the gene expression of glut-4, glut-5, fas, acc-1, nrf-1 and cpt-1 in the skeletal muscle. The results showed that HF accelerated accumulation of saturated FFAs within skeletal muscles. The HF fed neonatal rats had increased stearic acid, which was associated with decreased glucose, suppressed expression of glut-4, glut-5, nrf-1 and cpt-1 genes, and increased expression of acc-1 (p < 0.01) and fas. OA + HF and MET + HF treated groups had increased mono- and polyunsaturated FFAs; oleic, and octadecadienoic acids than the HF group. These unsaturated FFAs were associated with increased glut-4, glut-5 and nrf-1 (p < 0.01) and decreased acc-1 and fas (p < 0.05) in both OA + HF and MET + HF treated groups. Conclusions: The present study shows that neonatal oral administration of oleanolic acid and metformin potentially protects against the development of fructose-induced metabolic dysfunction in the rats in both short and long time periods.
Journal Article
The protective effect of neonatal oral administration of oleanolic acid against the subsequent development of fructose-induced metabolic dysfunction in male and female rats
by
Erlwanger, Kennedy H.
,
Mukwevho, Emmanuel
,
Nyakudya, Trevor T.
in
adulthood
,
adults
,
blood glucose
2018
Background
Consumption of fructose-rich diets has been implicated in the increasing global prevalence of metabolic syndrome (MetS). Interventions during periods of early ontogenic developmental plasticity can cause epigenetic changes which program metabolism for positive or negative health benefits later in life. The phytochemical oleanolic acid (OA) possesses anti-diabetic and anti-obesity effects. We investigated the potential protective effects of neonatal administration of OA on the subsequent development of high fructose diet-induced metabolic dysfunction in rats.
Method
Male and female (
N
= 112) suckling rats were randomly assigned to four groups and administered orally: distilled water (DW), oleanolic acid (OA; 60 mg/kg), high-fructose solution (HF; 20%
w
/
v
) or OA + HF for 7 days. The rats were weaned onto normal commercial rat chow up to day 55. From day 56, half of the rats in each treatment group were continued on plain water and the rest on a high fructose solution as drinking fluid for 8 weeks. On day 110, the rats were subjected to an oral glucose tolerance test and then euthanased on day 112. Tissue and blood samples were collected to determine the effects of the treatments on visceral fat pad mass, fasting plasma levels of cholesterol, insulin, glucose, triglycerides, insulin resistance (HOMA-IR) and glucose tolerance.
Results
Rats which consumed fructose as neonates and then later as adults (HF + F) and those which consumed fructose only in adulthood (DW + F) had significant increases in terminal body mass (females only), visceral fat mass (males and females), serum triglycerides (females only), epididymal fat (males only), fasting plasma glucose (males and females), impaired glucose metabolism (females only), β-cell dysfunction and insulin resistance (males and females) compared to the other treatment groups (
P
< 0.05). There were no differences in fasting serum cholesterol levels across all treatment groups in both male and female rats (
P
> 0.05).
Conclusion
We conclude that neonatal oral administration of OA during the critical window of developmental plasticity protected against the development of health outcomes associated with fructose-induced metabolic disorders in the rats.
Journal Article
Short-Term Neonatal Oral Administration of Oleanolic Acid Protects against Fructose-Induced Oxidative Stress in the Skeletal Muscles of Suckling Rats
by
Isaiah, Simon
,
Nyakudya, Trevor Tapiwa
,
Ndhlala, Ashwell Rungano
in
Acids
,
Administration, Oral
,
Adults
2019
Nutritional manipulations in the neonatal period are associated with the development of negative or positive health outcomes later in life. Excessive fructose consumption has been attributed to the increase in the global prevalence of metabolic syndrome (MetS) and the development of oxidative stress. Oleanolic acid (OA) has anti-diabetic and anti-obesity effects. We investigated the protective potential of orally administering OA in the neonatal period, to prevent fructose-induced oxidative stress, adverse health outcomes and maturation of the gastrointestinal tract (GIT) in suckling rats. Seven-day old Sprague-Dawley rats (N = 30) were gavaged daily with 10 mL/kg of: distilled water (DW), oleanolic acid (OA; 60 mg/kg), high fructose solution (HF; 20% w/v), or OAHF for 7 days. On day 14, tissue samples were collected to determine clinical health profiles, hepatic lipid content, and activity of anti-oxidant enzymes. Furthermore, biomarkers of oxidative stress and anti-oxidant capacity in the skeletal muscles were assessed. The gastrointestinal tract (GIT) morphometry was measured. Rats in all groups grew over the 7-day treatment period. There were no significant differences in the terminal body masses, GIT morphometry, surrogate markers of general health, liver lipid content across all treatment groups (p < 0.05). Neonatal fructose administration decreased the activity of catalase, depleted GSH and increased lipid peroxidation. However, the level of GSH and catalase activity were improved by neonatal OA treatment. Short-term oral OA administration during the critical developmental period protects against fructose-induced oxidative stress without adverse effects on health outcomes associated with MetS or precocious development of the GIT in suckling male and female rats.
Journal Article
Evaluation of free radical scavenging capacity of methoxy containing-hybrids of thiosemicarbazone-triazole and their influence on glucose transport
by
Ayeleso, Ademola O.
,
Joseph, Jitcy S.
,
Mukwevho, Emmanuel
in
3T3-L1 Cells
,
Adipocytes
,
Animals
2018
Background
Diabetes mellitus is a metabolic disease in which the body is unable to produce insulin or respond to insulin production, consequently leading to abnormal metabolism of carbohydrates, lipids and proteins causing elevation of glucose in the blood. Oxidative stress, an imbalance between the production of free radicals and body antioxidant system has been implicated in the pathogenesis of diabetes. Free radicals attack important macromolecules leading to cell damage. Antioxidants are intimately involved in the prevention of damage caused by free radicals.
Methods
The anti-diabetic effects of hybrid compounds (
2a-h
) of thiosemicarbazone and triazole containing methoxy groups at C (4) positions were tested against genes involved in glucose metabolism (
Glut-4
,
Mef2a
and
Nrf-1
) using quantitative real time PCR (qPCR). Free radical scavenging capacity (FRAP, TEAC, DPPH and ORAC) of the hybrids was also carried out by using established antioxidant capacity assays.
Results
From the results, hybrid compounds
2b
and
2h
showed more pronounced effects in up-regulating diabetes associated genes which are important in the up-regulation of glucose uptake. All the hybrid compounds also showed free radical scavenging abilities.
Conclusion
In conclusion, hybrid compounds (
2b
and
2h
) can be useful as potential drugs for the management of diabetes mellitus.
Journal Article
The long‐term protective effects of neonatal administration of curcumin against nonalcoholic steatohepatitis in high‐fructose‐fed adolescent rats
by
Chivandi, Eliton
,
Ibrahim, Kasimu G.
,
Erlwanger, Kennedy H.
in
Adenosine
,
Adolescents
,
Age Factors
2019
There is an increased prevalence of nonalcoholic steatohepatitis (NASH) in adolescents. The suckling period is developmentally plastic, affecting later health outcomes. We investigated whether neonatal administration of curcumin would provide protection against the development of NASH later in adolescence in rats fed a high‐fructose diet. From postnatal day (PN) 6 to PN 21, the pups (N = 128) were allocated to four groups and orally gavaged daily with either 0.5% dimethyl sulfoxide solution (vehicle control), curcumin (500 mg·kg−1), fructose (20%, w/v) or curcumin and fructose combined. All the pups were weaned and half the rats in each group had tap water, whereas the other received fructose (20%) as their drinking fluid ad libitum for 6 weeks. The rats’ liver NASH scores, lipid content, and RNA gene expression ratios of AMPKα and TNFα were determined. Hepatic lipid content was similar across the treatment groups in the males (P > 0.05, ANOVA). In the females, the hepatic lipid content in the treatment groups ranged from 2.7 to 4.3%. The livers of male and female rats that had fructose either as neonates and/or postweaning had significantly marked inflammation (P = 0.0112, Kruskal–Wallis) and fibrosis (P < 0.0001, ANOVA) which were attenuated by curcumin. The hepatic gene expression ratios for AMPKα in both sexes were significantly downregulated (P < 0.0001, ANOVA), whereas the expression ratios of TNFα were significantly upregulated (P < 0.0001) in rats fed a high‐fructose diet pre and/or postweaning compared to the other groups. Neonatal curcumin administration is a potential natural pharmacological candidate for the prevention of NASH. There is an epidemic of NASH in children that has no definitive treatment yet. Natural polyphenols administered during suckling have beneficial effects in programming for good metabolic health. Curcumin prevented the fructose‐induced hepatic inflammation and fibrosis.
Journal Article