Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
31
result(s) for
"Mullinax, John E."
Sort by:
Oncolytic Viral Therapy in Osteosarcoma
2024
Primary bone malignancies, including osteosarcoma (OS), are rare but aggressive. Current OS treatment, involving surgical resection and chemotherapy, has improved survival for non-metastatic cases but remains ineffective for recurrent or metastatic OS. Oncolytic viral therapy (OVT) is a promising alternative, using naturally occurring or genetically modified viruses to selectively target and lyse cancer cells and induce a robust immune response against remaining OS cells. Various oncolytic viruses (OVs), such as adenovirus, herpes simplex virus, and measles virus, have demonstrated efficacy in preclinical OS models. Combining OVT with other therapeutics, such as chemotherapy or immunotherapy, may further improve outcomes. Despite these advances, challenges in reliability of preclinical models, safety, delivery, and immune response must be addressed to optimize OVT for clinical use. Future research should focus on refining delivery methods, exploring combination treatments, and clinical trials to ensure OVT’s efficacy and safety for OS. Overall, OVT represents a novel approach with the potential to drastically improve survival outcomes for patients with OS.
Journal Article
Loss of PDPK1 abrogates resistance to gemcitabine in label-retaining pancreatic cancer cells
by
Mullinax, John E.
,
Xin, Hongwu
,
Thorgeirsson, Snorri
in
3-Phosphoinositide-Dependent Protein Kinases - metabolism
,
Apoptosis - drug effects
,
Biomedical and Life Sciences
2018
Background
Label-retaining cancer cells (LRCC) have been proposed as a model of slowly cycling cancer stem cells (CSC) which mediate resistance to chemotherapy, tumor recurrence, and metastasis. The molecular mechanisms of chemoresistance in LRCC remain to-date incompletely understood. This study aims to identify molecular targets in LRCC that can be exploited to overcome resistance to gemcitabine, a standard chemotherapy agent for the treatment of pancreas cancer.
Methods
LRCC were isolated following Cy5-dUTP staining by flow cytometry from pancreatic cancer cell lines. Gene expression profiles obtained from LRCC, non-LRCC (NLRCC), and bulk tumor cells were used to generate differentially regulated pathway networks. Loss of upregulated targets in LRCC on gemcitabine sensitivity was assessed via RNAi experiments and pharmacological inhibition. Expression patterns of PDPK1, one of the upregulated targets in LRCC, was studied in patients’ tumor samples and correlated with pathological variables and clinical outcome.
Results
LRCC are significantly more resistant to gemcitabine than the bulk tumor cell population. Non-canonical EGF (epidermal growth factor)-mediated signal transduction emerged as the top upregulated network in LRCC compared to non-LRCC, and knock down of EGF signaling effectors PDPK1 (3-phosphoinositide dependent protein kinase-1), BMX (BMX non-receptor tyrosine kinase), and NTRK2 (neurotrophic receptor tyrosine kinase 2) or treatment with PDPK1 inhibitors increased growth inhibition and induction of apoptosis in response to gemcitabine. Knockdown of PDPK1 preferentially increased growth inhibition and reduced resistance to induction of apoptosis upon gemcitabine treatment in the LRCC vs non-LRCC population. These findings are accompanied by lower expression levels of PDPK1 in tumors compared to matched uninvolved pancreas in surgical resection specimens and a negative association of membranous localization on IHC with high nuclear grade (
p
< 0.01).
Conclusion
Pancreatic cancer cell-derived LRCC are relatively resistant to gemcitabine and harbor a unique transcriptomic profile compared to bulk tumor cells. PDPK1, one of the members of an upregulated EGF-signaling network in LRCC, mediates resistance to gemcitabine, is found to be dysregulated in pancreas cancer specimens, and might be an attractive molecular target for combination therapy studies.
Journal Article
The Changing Paradigm of Management of Liver Abscesses in Chronic Granulomatous Disease
by
Zerbe, Christa S
,
Straughan, David M
,
Uzel, Gulbu
in
Abscesses
,
and Commentaries
,
Chronic granulomatous disease
2018
Chronic granulomatous disease (CGD) is a rare genetic disorder causing recurrent infections. More than one-quarter of patients develop hepatic abscesses and liver dysfunction. Recent reports suggest that disease-modifying treatment with corticosteroids is effective for these abscesses. Comparison of corticosteroid therapy to traditional invasive treatments has not been performed.
Records of 268 patients with CGD treated at the National Institutes of Health from 1980 to 2014 were reviewed. Patients with liver involvement and complete records were included. We recorded residual reactive oxygen intermediate (ROI) production by neutrophils, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase germline mutation status, laboratory values, imaging characteristics, time to repeat hepatic interventions, and overall survival among 3 treatment cohorts: open liver surgery (OS), percutaneous liver-directed interventional radiology therapy (IR), and high-dose corticosteroid management (CM).
Eighty-eight of 268 patients with CGD suffered liver involvement. Twenty-six patients with a median follow-up of 15.5 years (8.5-32.9 years of follow-up) had complete records and underwent 100 standard interventions (42 IR and 58 OS). Eight patients received a treatment with high-dose corticosteroids only. There were no differences in NADPH genotype, size, or number of abscesses between patients treated with OS, IR, or CM. Time to repeat intervention was extended in OS compared with IR (18.8 vs 9.5 months, P = .04) and further increased in CM alone (median time to recurrence not met). Impaired macrophage and neutrophil function measured by ROI production correlated with shorter time to repeat intervention (r = 0.6, P = .0019).
Treatment of CGD-associated liver abscesses with corticosteroids was associated with fewer subsequent hepatic interventions and improved outcome compared to invasive treatments.
Journal Article
Radar-Guided Localization and Resection for Metastatic Nodal and Soft Tissue Melanoma: A Single-Institution Retrospective Study
by
Beekman, Kate E.
,
Mullinax, John E.
,
Elleson, Kelly M.
in
Cancer
,
Cancer therapies
,
Feasibility studies
2024
Background
Radar-guided localization (RGL) offers a wire-free, nonradioactive surgical guidance method consisting of a small percutaneously-placed radar reflector and handheld probe. This study investigates the feasibility, timing, and outcomes of RGL for melanoma metastasectomy.
Methods
We retrospectively identified patients at our cancer center who underwent RGL resection of metastatic melanoma between December 2020-June 2023. Data pertaining to patients’ melanoma history, management, reflector placement and retrieval, and follow-up was extracted from patient charts and analyzed using descriptive statistics.
Results
Twenty-three RGL cases were performed in patients with stage III-IV locoregional or oligometastatic disease, 10 of whom had reflectors placed prior to neoadjuvant therapy. Procedures included soft tissue nodule removals (8), index lymph node removals (13), and therapeutic lymph node dissections (2). Reflectors were located and retrieved intraoperatively in 96% of cases from a range of 2 to 282 days after placement; the last reflector was not able to be located during surgery via probe or intraoperative ultrasound. One retrieved reflector had migrated from the index lesion, thus overall success rate of reflector and associated index lesion removal was 21 of 23 (91%). All RGL-localized and retrieved index lesions that contained viable tumor (10) had microscopically negative margins. There were no complications attributable to reflector insertion and no unexpected complications of RGL surgery.
Conclusion
In our practice, RGL is a safe and effective surgical localization method for soft tissue and nodal melanoma metastases. The inert nature of the reflector enables implantation prior to neoadjuvant therapy with utility in index lymph node removal.
Plain language summary
There are a variety of tools available to localize melanoma that had spread to deep layers of the skin or lymph nodes that can guide surgeons to the cancer when the tumor cannot be felt. We evaluated a marker that reflects radar signals that has been studied in breast surgery but not in melanoma. The marker was placed in the tumor before surgery and was located during surgery using a handheld probe, guiding the surgeon to the correct location. An advantage of the radar-reflecting marker we studied is that since it is safe to stay in the body, it can be placed ahead of the use of cancer medications and can keep track of the tumor as it responds to treatment. In a review of 23 surgeries in which the radar-reflecting marker was used, there was one case where the marker migrated away from the tumor and one case where the marker was not able to be located. Monitoring or alternative definitive treatment was provided in each of these cases. Overall, we found the marker to be an effective tumor localization tool for surgeons and safe for patients. Other marker options available are unable or less suitable to be placed a long time in advance of surgery due to either technical or safety reasons, so the radar-reflecting marker is especially useful when it is placed in a tumor ahead of medical treatment leading up to planned surgical treatment.
Journal Article
Intralesional injection of rose bengal augments the efficacy of gemcitabine chemotherapy against pancreatic tumors
by
Innamarato, Patrick
,
Mackay, Amy
,
Mullinax, John E.
in
Animals
,
Antimetabolites, Antineoplastic - pharmacology
,
Antimetabolites, Antineoplastic - therapeutic use
2021
Background
Chemotherapy regimens that include the utilization of gemcitabine are the standard of care in pancreatic cancer patients. However, most patients with advanced pancreatic cancer die within the first 2 years after diagnosis, even when treated with standard of care chemotherapy. This study aims to explore combination therapies that could boost the efficacy of standard of care regimens in pancreatic cancer patients.
Methods
In this study, we used PV-10, a 10% solution of rose bengal, to induce the death of human pancreatic tumor cells in vitro. Murine in vivo studies were carried out to examine the effectiveness of the direct injection of PV-10 into syngeneic pancreatic tumors in causing lesion-specific ablation. Intralesional PV-10 treatment was combined with systemic gemcitabine treatment in tumor-bearing mice to investigate the control of growth among treated tumors and distal uninjected tumors. The involvement of the immune-mediated clearance of tumors was examined in immunogenic tumor models that express ovalbumin (OVA).
Results
In this study, we demonstrate that the injection of PV-10 into mouse pancreatic tumors caused lesion-specific ablation. We show that the combination of intralesional PV-10 with the systemic administration of gemcitabine caused lesion-specific ablation and delayed the growth of distal uninjected tumors. We observed that this treatment strategy was markedly more successful in immunogenic tumors that express the neoantigen OVA, suggesting that the combination therapy enhanced the immune clearance of tumors. Moreover, the regression of tumors in mice that received PV-10 in combination with gemcitabine was associated with the depletion of splenic CD11b
+
Gr-1
+
cells and increases in damage associated molecular patterns HMGB1, S100A8, and IL-1α.
Conclusions
These results demonstrate that intralesional therapy with PV-10 in combination with gemcitabine can enhance anti-tumor activity against pancreatic tumors and raises the potential for this strategy to be used for the treatment of patients with pancreatic cancer.
Journal Article
Grade of Primary Cutaneous Leiomyosarcoma Dictates Risk for Metastatic Spread and Disease-Specific Mortality
2023
Background and Objectives
Primary cutaneous leiomyosarcoma (cLMS), a rare, typically intradermal tumor, has previously been reported to exhibit an indolent course of disease with zero-to-low risk of local recurrence or distant metastasis. This study seeks to evaluate recurrence and survival of cLMS patients through study of its clinicopathologic and treatment characteristics.
Methods
All patients included underwent resection of primary cLMS at this institution between 2006 and 2019. A retrospective cohort study analysis of clinicopathologic characteristics, treatment, recurrence, and overall survival was performed. Data was assessed through descriptive statistics and outcome measures assessed by Cox proportional models and log-rank tests.
Results
Eighty-eight patients with cLMS were evaluated. The majority were men (n = 68, 77%) and Caucasian (n = 85, 97%), with median age at diagnosis of 66 years (range 20–96). 65% of tumors were located on the extremities, with a median size of 1.3 cm (range .3–15). Assessment revealed low (n = 41, 47%), intermediate (n = 29, 33%), and high (n = 18, 20%) grade tumors, demonstrating extension into subcutaneous tissue in 38/60 (60%), with 3 patients exhibiting extension into muscle (3%). All underwent resection as primary treatment with median 1 cm margins (range .5–2). With median follow-up of 27.5 months (IQR 8–51; range 1–131), no low-grade cases had recurrence or death while there was a recurrence rate of 19.1% (9/47) and death rate of 8.5% (4/47) in intermediate- to high-grade cases.
Conclusions
Primary tumor resection of cLMS provides excellent local control for low-grade tumors as no low-grade cases experienced recurrence. For patients with intermediate- to high-grade tumors, there is potential for local recurrence, distant metastasis, and death, and therefore surveillance following treatment is encouraged.
Journal Article
Neoantigen-specific CD4+ tumor-infiltrating lymphocytes are potent effectors identified within adoptive cell therapy products for metastatic melanoma patients
by
Branthoover, Holly
,
Scott, Ellen
,
Sarnaik, Amod A.
in
Antigens
,
Cancer
,
CD4-Positive T-Lymphocytes
2023
BackgroundAdoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TILs) is a promising immunotherapeutic approach for patients with advanced solid tumors. While numerous advances have been made, the contribution of neoantigen-specific CD4+T cells within TIL infusion products remains underexplored and therefore offers a significant opportunity for progress.MethodsWe analyzed infused TIL products from metastatic melanoma patients previously treated with ACT for the presence of neoantigen-specific T cells. TILs were enriched on reactivity to neoantigen peptides derived and prioritized from patient sample-directed mutanome analysis. Enriched TILs were further investigated to establish the clonal neoantigen response with respect to function, transcriptomics, and persistence following ACT.ResultsWe discovered that neoantigen-specific TIL clones were predominantly CD4+ T cells and were present in both therapeutic responders and non-responders. CD4+ TIL demonstrated an effector T cell response with cytotoxicity toward autologous tumor in a major histocompatibility complex class II-dependent manner. These results were validated by paired TCR and single cell RNA sequencing, which elucidated transcriptomic profiles distinct to neoantigen-specific CD4+ TIL.ConclusionsDespite methods which often focus on CD8+T cells, our study supports the importance of prospective identification of neoantigen-specific CD4+ T cells within TIL products as they are a potent source of tumor-specific effectors. We further advocate for the inclusion of neoantigen-specific CD4+ TIL in future ACT protocols as a strategy to improve antitumor immunity.
Journal Article
Modulating the polyamine/hypusine axis controls generation of CD8+ tissue-resident memory T cells
by
Epling-Burnette, Pearlie K.
,
Elmarsafawi, Aya G.
,
Locke, Frederick L.
in
Amino acids
,
Antigens
,
Biosynthesis
2023
Glutaminolysis is a hallmark of the activation and metabolic reprogramming of T cells. Isotopic tracer analyses of antigen-activated effector CD8+ T cells revealed that glutamine is the principal carbon source for the biosynthesis of polyamines putrescine, spermidine, and spermine. These metabolites play critical roles in activation-induced T cell proliferation, as well as for the production of hypusine, which is derived from spermidine and is covalently linked to the translation elongation factor eukaryotic translation initiation factor 5A (eIF5A). Here, we demonstrated that the glutamine/polyamine/hypusine axis controlled the expression of CD69, an important regulator of tissue-resident memory T cells (Trm). Inhibition of this circuit augmented the development of Trm cells ex vivo and in vivo in the BM, a well-established niche for Trm cells. Furthermore, blocking the polyamine/hypusine axis augmented CD69 expression as well as IFN-γ and TNF-α production in (a) human CD8+ T cells from peripheral blood and sarcoma tumor infiltrating lymphocytes and (b) human CD8+ CAR-T cells. Collectively, these findings support the notion that the polyamine-hypusine circuit can be exploited to modulate Trm cells for therapeutic benefit.
Journal Article
The science of tumor-infiltrating lymphocytes (TIL): perspectives from the SITC Surgery Committee
2025
Immunity to solid tumors is associated with the hallmarks of cancer-associated inflammation and the ability of immune mechanisms to limit tumor progression. Application of expanded tumor-infiltrating lymphocyte adoptive T cell therapy (TIL ACT) in clinical trials is now practiced at many sites around the world. Prior to immune checkpoint blockade (ICB), an approximate 50% objective response rate was consistently observed across multiple institutions for patients with melanoma. This now-approved strategy approaches 35% in recent studies from the USA and 49% with more highly selected patients in Europe. Here, we focus on early TIL studies in non-melanoma epithelial neoplasms. Increased understanding of cancer immunology has allowed changes in the TIL expansion process to include: (1) initial generation of TIL from fragments, (2) use of specialized large-scale culture vessels, (3) use of the rapid expansion protocol to enable ‘young’ TIL prosecution, and (4) treatment regimens employing non-myeloablative (NMA) chemotherapy followed by brief interleukin-2 administration. NMA leads to homeostatic proliferation of the transferred T cells, engraftment, profound neutropenia and lymphopenia, and improved clinical outcome. A key success of TIL ACT relies on the quality, specificity, and number of pre-existing TIL. This, in turn, is highly influenced by the suppressive tumor microenvironment. Thus, any means to alter ‘cold tumor (non-T cell inflamed)’ to ‘hot tumor (T cell inflamed)’ is theoretically desirable to improve both the quality and quantity of TIL obtained before harvest. Combinations of other immunotherapies such as application of ICB, co-stimulatory molecule agonist antibodies, autophagy inhibition, and dendritic cell support strategies could provide additional improvements in TIL therapy and enable harnessing of the adaptive immune response to enhance the clinical outcome of TIL-ACT patients.
Journal Article
Tumor-infiltrating lymphocyte treatment for anti-PD-1-resistant metastatic lung cancer: a phase 1 trial
by
Saltos, Andreas N.
,
Landin, Ana M.
,
Kaye, Frederic J.
in
631/67/1612/1350
,
631/67/580
,
692/308/575
2021
Adoptive cell therapy using tumor-infiltrating lymphocytes (TILs) has shown activity in melanoma, but has not been previously evaluated in metastatic non-small cell lung cancer. We conducted a single-arm open-label phase 1 trial (
NCT03215810
) of TILs administered with nivolumab in 20 patients with advanced non-small cell lung cancer following initial progression on nivolumab monotherapy. The primary end point was safety and secondary end points included objective response rate, duration of response and T cell persistence. Autologous TILs were expanded ex vivo from minced tumors cultured with interleukin-2. Patients received cyclophosphamide and fludarabine lymphodepletion, TIL infusion and interleukin-2, followed by maintenance nivolumab. The end point of safety was met according to the prespecified criteria of ≤17% rate of severe toxicity (95% confidence interval, 3–29%). Of 13 evaluable patients, 3 had confirmed responses and 11 had reduction in tumor burden, with a median best change of 35%. Two patients achieved complete responses that were ongoing 1.5 years later. In exploratory analyses, we found T cells recognizing multiple types of cancer mutations were detected after TIL treatment and were enriched in responding patients. Neoantigen-reactive T cell clonotypes increased and persisted in peripheral blood after treatment. Cell therapy with autologous TILs is generally safe and clinically active and may constitute a new treatment strategy in metastatic lung cancer.
Adoptive cell therapy with tumor-infiltrating lymphocytes in metastatic lung cancer patients is safe and elicits antitumor activity, including ongoing complete responses, in association with polyclonal T cell responses against tumor antigens.
Journal Article