Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
210
result(s) for
"Mun, Hui"
Sort by:
The androgen receptor is a tumor suppressor in estrogen receptor–positive breast cancer
by
Hui, Mun
,
Laven-Law, Geraldine
,
Alexandrou, Sarah
in
631/67/1347
,
692/308/2778
,
692/699/67/1347
2021
The role of the androgen receptor (AR) in estrogen receptor (ER)-α-positive breast cancer is controversial, constraining implementation of AR-directed therapies. Using a diverse, clinically relevant panel of cell-line and patient-derived models, we demonstrate that AR activation, not suppression, exerts potent antitumor activity in multiple disease contexts, including resistance to standard-of-care ER and CDK4/6 inhibitors. Notably, AR agonists combined with standard-of-care agents enhanced therapeutic responses. Mechanistically, agonist activation of AR altered the genomic distribution of ER and essential co-activators (p300, SRC-3), resulting in repression of ER-regulated cell cycle genes and upregulation of AR target genes, including known tumor suppressors. A gene signature of AR activity positively predicted disease survival in multiple clinical ER-positive breast cancer cohorts. These findings provide unambiguous evidence that AR has a tumor suppressor role in ER-positive breast cancer and support AR agonism as the optimal AR-directed treatment strategy, revealing a rational therapeutic opportunity.
Functional interplay of sex hormones in estrogen receptor–positive breast cancer unveils the therapeutic potential of androgen receptor agonists.
Journal Article
Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer
2018
The cellular and molecular basis of stromal cell recruitment, activation and crosstalk in carcinomas is poorly understood, limiting the development of targeted anti-stromal therapies. In mouse models of triple negative breast cancer (TNBC), Hedgehog ligand produced by neoplastic cells reprograms cancer-associated fibroblasts (CAFs) to provide a supportive niche for the acquisition of a chemo-resistant, cancer stem cell (CSC) phenotype via FGF5 expression and production of fibrillar collagen. Stromal treatment of patient-derived xenografts with smoothened inhibitors (SMOi) downregulates CSC markers expression and sensitizes tumors to docetaxel, leading to markedly improved survival and reduced metastatic burden. In the phase I clinical trial EDALINE, 3 of 12 patients with metastatic TNBC derived clinical benefit from combination therapy with the SMOi Sonidegib and docetaxel chemotherapy, with one patient experiencing a complete response. These studies identify Hedgehog signaling to CAFs as a novel mediator of CSC plasticity and an exciting new therapeutic target in TNBC.
Stromal cell recruitment, activation and crosstalk with cancer cells is poorly understood. Here, the authors demonstrate that cancer cell-derived Hedgehog ligand triggers stromal remodeling that in turn induces a cancer-stem-cell like, drug-resistant phenotype of nearby cancer cells while treatment with smoothened inhibitors reverses these phenotypes.
Journal Article
Production forecasting and uncertainty quantification for naturally fractured reservoirs using a new data-space inversion procedure
2017
A new method for production forecasting and uncertainty quantification, applicable for realistic naturally fractured reservoirs (NFRs) represented as general discrete-fracture-matrix (DFM) models, is developed and applied. The forecasting procedure extends a recently developed data-space inversion (DSI) technique that generates production predictions using only prior-model simulation results and observed data. The method does not provide posterior (history-matched) geological models. Rather, the DSI method treats production data as random variables. The prior distribution is estimated from the flow simulations performed on prior geological models, and the posterior data-variable distribution is sampled using a data-space randomized maximum likelihood method. The DSI treatment requires the parameterization of data variables to render them approximately multivariate Gaussian. The complex production data considered here (resulting from frequent well shut-ins) is treated using a new reparameterization that involves principal component analysis combined with histogram transformation. The DSI method is first applied for two-dimensional DFM systems involving multiple fracture scenarios. In this case, comparison with a rejection sampling procedure is possible, and we show that the DSI results for P10, P50, and P90 statistics are consistent with rejection sampling results. The DSI method is then applied to a realistic NFR that has undergone 15 years of primary production and is under consideration for waterflooding. To construct the DSI representation, around 400 prior DFM models, which correspond to different geologic concepts and properties, are simulated. Two different reference ‘true’ models, along with different data-assimilation durations, are considered to evaluate the performance of the DSI procedure. In all cases, the DSI predictions are shown to be consistent with the forecasts from the ‘true’ model and to provide reasonable quantification of forecast uncertainty.
Journal Article
Improvement in the Electrochemical Properties of Lithium Metal by Heat Treatment: Changes in the Chemical Composition of Native and Solid Electrolyte Interphase Films
2022
This study aims to improve the electrochemical properties of lithium metal for application as a negative electrode in high-energy-density batteries. Lithium metal was heat-treated at varying temperatures to modify the native and solid electrolyte interphase (SEI) films, which decreased the interfacial resistance between the lithium electrode and electrolyte, thereby improving the cycling performance. Moreover, the influence of the native and SEI films on lithium metals depended on the heat-treatment temperature. Accordingly, X-ray photoelectron spectroscopy (XPS) was performed to investigate the chemical composition of the native and SEI films on the heat-treated lithium metals before and after immersion in an organic electrolyte solution. The XPS results revealed the high dependence of the chemical composition of the outer layer of the native and SEI films on the heat-treatment temperature, implying that the native and SEI films can be effectively modified by heat treatment.
Journal Article
Evaluation of FGFR targeting in breast cancer through interrogation of patient-derived models
by
Welm, Alana L.
,
Lim, Elgene
,
Richardson, Gary
in
Analysis
,
Animals
,
Biomedical and Life Sciences
2021
Background
Particular breast cancer subtypes pose a clinical challenge due to limited targeted therapeutic options and/or poor responses to the existing targeted therapies. While cell lines provide useful pre-clinical models, patient-derived xenografts (PDX) and organoids (PDO) provide significant advantages, including maintenance of genetic and phenotypic heterogeneity, 3D architecture and for PDX, tumor–stroma interactions. In this study, we applied an integrated multi-omic approach across panels of breast cancer PDXs and PDOs in order to identify candidate therapeutic targets, with a major focus on specific FGFRs.
Methods
MS-based phosphoproteomics, RNAseq, WES and Western blotting were used to characterize aberrantly activated protein kinases and effects of specific FGFR inhibitors. PDX and PDO were treated with the selective tyrosine kinase inhibitors AZD4547 (FGFR1-3) and BLU9931 (FGFR4). FGFR4 expression in cancer tissue samples and PDOs was assessed by immunohistochemistry. METABRIC and TCGA datasets were interrogated to identify specific FGFR alterations and their association with breast cancer subtype and patient survival.
Results
Phosphoproteomic profiling across 18 triple-negative breast cancers (TNBC) and 1 luminal B PDX revealed considerable heterogeneity in kinase activation, but 1/3 of PDX exhibited enhanced phosphorylation of FGFR1, FGFR2 or FGFR4. One TNBC PDX with high FGFR2 activation was exquisitely sensitive to AZD4547. Integrated ‘omic analysis revealed a novel FGFR2-SKI fusion that comprised the majority of FGFR2 joined to the C-terminal region of SKI containing the coiled-coil domains. High FGFR4 phosphorylation characterized a luminal B PDX model and treatment with BLU9931 significantly decreased tumor growth. Phosphoproteomic and transcriptomic analyses confirmed on-target action of the two anti-FGFR drugs and also revealed novel effects on the spliceosome, metabolism and extracellular matrix (AZD4547) and RIG-I-like and NOD-like receptor signaling (BLU9931). Interrogation of public datasets revealed FGFR2 amplification, fusion or mutation in TNBC and other breast cancer subtypes, while FGFR4 overexpression and amplification occurred in all breast cancer subtypes and were associated with poor prognosis. Characterization of a PDO panel identified a luminal A PDO with high FGFR4 expression that was sensitive to BLU9931 treatment, further highlighting FGFR4 as a potential therapeutic target.
Conclusions
This work highlights how patient-derived models of human breast cancer provide powerful platforms for therapeutic target identification and analysis of drug action, and also the potential of specific FGFRs, including FGFR4, as targets for precision treatment.
Journal Article
Optimizing Endoscopic Transpyloric Feeding Tube Placement in Low Birth Weight Infants: Practical Insights from Clinical Experience
2025
Background and Objectives: Transpyloric (TP) feeding tube placement is a viable nutritional strategy in low birth weight infants (LBWIs) with severe gastroesophageal reflux or feeding intolerance. However, technical challenges are encountered in patients of this age group due to their small body size and the limited availability of appropriately sized equipment. Materials and Methods: We retrospectively reviewed 15 endoscopic TP tube placements performed in 12 LBWIs weighing less than 2.5 kg between May 2017 and March 2025. Emphasis was placed on procedural techniques, equipment selection, and troubleshooting strategies for successful bedside execution. Results: All procedures were performed without the use of additional accessories, by advancing a feeding tube preloaded with a guidewire under direct visualization provided by a 5.5 mm outer diameter endoscope. All procedures were technically successful, including 14 performed at the bedside using a portable endoscope. A 6 or 8 Fr feeding tube loaded with a soft-tipped guidewire was advanced through the pylorus under direct endoscopic visualization. The average body weight at the time of the procedure was 1950 ± 296 g. No complications such as mucosal injury, perforation, or tube dislodgement occurred during the procedure. The average enteral feeding volume increased from 33.4 ± 52.8 cc/kg to 92.0 ± 44.4 cc/kg within 7 days. Full enteral nutrition was achieved in all surviving patients within three weeks. The feeding tube remained in place for a mean duration of 26.1 ± 19.2 days. Conclusions: Endoscopic TP tube placement in LBWIs can be safely and reliably performed at the bedside with appropriate technical modifications. It facilitates earlier advancement to full enteral nutrition and may serve as a viable option for LBWIs unresponsive to standard feeding methods.
Journal Article
CAR NK92 Cells Targeting BCMA Can Effectively Kill Multiple Myeloma Cells Both In Vitro and In Vivo
2024
Multiple myeloma (MM) is a hematological malignancy caused by malignant proliferation of plasma cells in bone marrow. Over the last decade, the survival outcome of patients with multiple myeloma (MM) has been substantially improved with the emergence of novel therapeutic agents. However, MM remains an incurable neoplastic plasma cell disorder. In addition, almost all MM patients inevitably relapse due to drug resistance. Chimeric antigen receptor (CAR)-modified NK cells represent a promising immunotherapeutic modality for cancer treatment. In this study, NK92 cells were engineered to express the third generation of BCMA CAR. In vitro, BCMA CAR-engineered NK92 cells displayed higher cytotoxicity and produced more cytokines such as IFN-γ and granzyme B than NK92 cells when they were co-cultured with MM cell lines. Furthermore, BCMA CAR-engineered NK92 cells released significantly higher amounts of cytokines and showed higher cytotoxicity when they were exposed to primary cells isolated from MM patients. The cytotoxicity of BCMA CAR NK92 cells was enhanced after MM cells were treated with bortezomib. Additionally, BCMA CAR NK92 cells exhibited potent antitumor activities in subcutaneous tumor models of MM. These results demonstrate that regional administration of BCMA CAR NK92 cells is a potentially promising strategy for treating MM.
Journal Article
Translatability of findings from cynomolgus monkey to human suggests a mechanistic role for IL-21 in promoting immunogenicity to an anti-PD-1/IL-21 mutein fusion protein
by
Hui, Mun
,
Gupta, Shalini
,
Zuch de Zafra, Christina L.
in
Animal welfare
,
Animals
,
anti-drug antibodies
2024
AMG 256 is a bi-specific, heteroimmunoglobulin molecule with an anti-PD-1 antibody domain and a single IL-21 mutein domain on the C-terminus. Nonclinical studies in cynomolgus monkeys revealed that AMG 256 administration led to the development of immunogenicity-mediated responses and indicated that the IL-21 mutein domain of AMG 256 could enhance the anti-drug antibody response directed toward the monoclonal antibody domain. Anti-AMG 256 IgE were also observed in cynomolgus monkeys. A first-in-human (FIH) study in patients with advanced solid tumors was designed with these risks in mind. AMG 256 elicited ADA in 28 of 33 subjects (84.8%). However, ADA responses were only robust and exposure-impacting at the 2 lowest doses. At mid to high doses, ADA responses remained low magnitude and all subjects maintained exposure, despite most subjects developing ADA. Limited drug-specific IgE were also observed during the FIH study. ADA responses were not associated with any type of adverse event. The AMG 256 program represents a unique case where nonclinical studies informed on the risk of immunogenicity in humans, due to the IL-21-driven nature of the response.
Journal Article
UV-Vis Spectroscopy: A New Approach for Assessing the Color Index of Transformer Insulating Oil
2018
Monitoring the condition of transformer oil is considered to be one of the preventive maintenance measures and it is very critical in ensuring the safety as well as optimal performance of the equipment. Various oil properties and contents in oil can be monitored such as acidity, furanic compounds and color. The current method is used to determine the color index (CI) of transformer oil produces an error of 0.5 in measurement, has high risk of human handling error, additional expense such as sampling and transportations, and limited samples can be measured per day due to safety and health reasons. Therefore, this work proposes the determination of CI of transformer oil using ultraviolet-to-visible (UV-Vis) spectroscopy. Results show a good correlation between the CI of transformer oil and the absorbance spectral responses of oils from 300 nm to 700 nm. Modeled equations were developed to relate the CI of the oil with the cutoff wavelength and absorbance, and with the area under the curve from 360 nm to 600 nm. These equations were verified with another set of oil samples. The equation that describes the relationship between cutoff wavelength, absorbance and CI of the oil shows higher accuracy with root mean square error (RMSE) of 0.1961.
Journal Article
A phase I, open-label, multicentre, first-in-human study to evaluate safety, pharmacokinetics and efficacy of AMG 404, a PD-1 inhibitor, in patients with advanced solid tumours
2025
ObjectiveTo evaluate the safety, tolerability, pharmacokinetics (PK) and preliminary antitumour activity of AMG 404, a fully human IgG1 monoclonal antibody targeting programmed cell death-1, in patients with advanced solid tumours.DesignFirst-in-human phase I study comprising eight dose expansion cohorts, including cohorts with microsatellite instability-high (MSI-H) tumours and non-small cell lung cancer with high programmed death-ligand 1 expression (NSCLC/PDL1-H, tumour proportion score ≥50%).SettingConducted across 28 global sites.ParticipantsThis study enrolled adult patients with histologically or cytologically confirmed metastatic or locally advanced solid tumours not amenable to curative treatment with surgery or radiation. The inclusion criteria included a life expectancy of >3 months, ≥1 measurable or evaluable lesion per modified Response Evaluation Criteria in Solid Tumours (RECIST) V.1.1, an Eastern Cooperative Oncology Group performance status of ≤2 and adequate haematological, renal and hepatic function. Patients with prior treatment with checkpoint inhibitors, primary brain tumour or untreated or symptomatic brain metastases and leptomeningeal disease and history of other malignancy within the past 2 years were excluded.InterventionsThe planned doses were 240 mg, 480 mg and 1050 mg of AMG 404 administered every 4 weeks (Q4W).Primary and secondary outcome measuresPrimary endpoints were dose-limiting toxicities (DLTs), treatment-emergent adverse events, treatment-related adverse events, changes in vital signs and clinical laboratory tests. Secondary endpoints included PK parameters, incidence of antidrug (AMG 404) antibodies and antitumour activity assessed per modified RECIST V.1.1 (objective response, duration of response, progression-free survival (PFS), disease control and duration of stable disease).ResultsA total of 171 patients were enrolled; 168 were treated. Median (range) follow-up was 36.3 weeks (1.6–137.1). No DLTs were observed. Grade 3 and serious treatment-related adverse events occurred in 16 (9.5%) and 12 (7.1%) patients, respectively. The 480 mg Q4W dose was selected as the recommended phase II dose. AMG 404 serum exposure increased approximately dose proportionally. The objective response rate (80% CI) was 19.6% (15.7–24.1) for the overall population and 36.6% (26.4–47.8) and 30.8% (14.2–52.3) for cohorts with MSI-H tumours (n=41) and NSCLC/PDL1-H (n=13), respectively. The overall disease control rate (80% CI) was 54.8% (49.5–59.9). The median (80% CI) PFS was 3.7 (3.5–4.5) months for the overall population and 14.8 (9.0–not estimable) and 4.4 (2.2–9.7) months for cohorts with MSI-H tumours and NSCLC/PDL1-H, respectively.ConclusionsAMG 404 monotherapy was tolerable at the tested doses, with encouraging antitumour activity observed across tumour types.Trial registration numberNCT03853109.
Journal Article