Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
134 result(s) for "Munné-Bosch, Sergi"
Sort by:
Production and Scavenging of Reactive Oxygen Species and Redox Signaling during Leaf and Flower Senescence: Similar But Different
Reactive oxygen species (ROS) play a key role in the regulation of many developmental processes, including senescence, and in plant responses to biotic and abiotic stresses. Several mechanisms of ROS generation and scavenging are similar, but others differ between senescing leaves and petals, despite these organs sharing a common evolutionary origin. Photosynthesis-derived ROS, nutrient remobilization, and reversibility of senescence are necessarily distinct features of the progression of senescence in the two organs. Furthermore, recent studies have revealed specific redox signaling processes that act in concert with phytohormones and transcription factors to regulate senescence-associated genes in leaves and petals. Here, we review some of the recent advances in our understanding of the mechanisms underpinning the production and elimination of ROS in these two organs. We focus on unveiling common and differential aspects of redox signaling in leaf and petal senescence, with the aim of linking physiological, biochemical, and molecular processes. We conclude that the spatiotemporal impact of ROS in senescing tissues differs between leaves and flowers, mainly due to the specific functionalities of these organs.
Stress Memory and the Inevitable Effects of Drought: A Physiological Perspective
Plants grow and develop by adjusting their physiology to changes in their environment. Changes in the abiotic environment occur over years, seasons, and days, but also over minutes and even seconds. In this ever-changing environment, plants may adjust their structure and function rapidly to optimize growth and reproduction. Plant responses to reiterated drought (i.e., repeated cycles of drought) differ from those to single incidences of drought; in fact, in nature, plants are usually exposed to repeated cycles of drought that differ in duration and intensity. Nowadays, there is increased interest in better understanding mechanisms of plant response to reiterated drought due, at least in part, to the discovery of epigenomic changes that trigger drought stress memory in plants. Beyond epigenomic changes, there are, however, other aspects that should be considered in the study of plant responses to reiterated drought: from changes in other \"omics\" approaches (transcriptomics, proteomics, and metabolomics), to changes in plant structure; all of which may help us to better understand plant stress memory and its underlying mechanisms. Here, we present an example in which reiterated drought affects the pigment composition of leaves in the ornamental plant Silene dioica and discuss the importance of structural changes (in this case in the photosynthetic apparatus) for the plant response to reiterated drought; they represent a stress imprint that can affect plant response to subsequent stress episodes. Emphasis is placed on the importance of considering structural changes, in addition to physiological adjustments at the \"omics\" level, to understand stress memory in plants better.
Rapid and sensitive hormonal profiling of complex plant samples by liquid chromatography coupled to electrospray ionization tandem mass spectrometry
Background Plant hormones play a pivotal role in several physiological processes during a plant's life cycle, from germination to senescence, and the determination of endogenous concentrations of hormones is essential to elucidate the role of a particular hormone in any physiological process. Availability of a sensitive and rapid method to quantify multiple classes of hormones simultaneously will greatly facilitate the investigation of signaling networks in controlling specific developmental pathways and physiological responses. Due to the presence of hormones at very low concentrations in plant tissues (10-9 M to 10-6 M) and their different chemistries, the development of a high-throughput and comprehensive method for the determination of hormones is challenging. Results The present work reports a rapid, specific and sensitive method using ultrahigh-performance liquid chromatography coupled to electrospray ionization tandem spectrometry (UPLC/ESI-MS/MS) to analyze quantitatively the major hormones found in plant tissues within six minutes, including auxins, cytokinins, gibberellins, abscisic acid, 1-amino-cyclopropane-1-carboxyic acid (the ethylene precursor), jasmonic acid and salicylic acid. Sample preparation, extraction procedures and UPLC-MS/MS conditions were optimized for the determination of all plant hormones and are summarized in a schematic extraction diagram for the analysis of small amounts of plant material without time-consuming additional steps such as purification, sample drying or re-suspension. Conclusions This new method is applicable to the analysis of dynamic changes in endogenous concentrations of hormones to study plant developmental processes or plant responses to biotic and abiotic stresses in complex tissues. An example is shown in which a hormone profiling is obtained from leaves of plants exposed to salt stress in the aromatic plant, Rosmarinus officinalis.
Tocochromanol functions in plants: antioxidation and beyond
Tocopherols and tocotrienols, collectively known as tocochromanols, are lipid-soluble molecules that belong to the group of vitamin E compounds and are essential in the human diet. Not surprisingly, most of what is known about the biological functions of tocochromanols comes from studies of mammalian systems, yet they have been shown to be synthesized only by photosynthetic organisms. The last decade has seen a radical change in the appreciation of the biological role of tocochromanols in plants thanks to a detailed characterization of mutant and transgenic plants, including several Arabidopsis thaliana mutants, the sucrose export defective1 (sxd1) maize mutant, and some transgenic potato and tobacco lines altered in tocochromanol biosynthesis. Recent findings indicate that tocopherols may play important roles in plants beyond their antioxidant function in photosynthetic membranes. Plants deficient in tocopherols show alterations in germination and export of photoassimilates, and growth, leaf senescence, and plant responses to abiotic stresses, thus suggesting that tocopherols may influence a number of physiological processes in plants. Thus, in this review not only the antioxidant function of tocochromanols in plants, but also these new emerging possible roles will be considered. Particular attention will be paid to specific roles attributed to different tocopherol homologues (particularly α- and γ-tocopherol) and the possible functions of tocotrienols, which in contrast to tocopherols are only present in a range of unrelated plant groups and are almost exclusively found in seeds and fruits.
Transcription Factor ATAF1 in Arabidopsis Promotes Senescence by Direct Regulation of Key Chloroplast Maintenance and Senescence Transcriptional Cascades
Senescence represents a fundamental process of late leaf development. Transcription factors (TFs) play an important role for expression reprogramming during senescence; however, the gene regulatory networks through which they exert their functions, and their physiological integration, are still largely unknown. Here, we identify the Arabidopsis (Arabidopsis thaliana) abscisic acid (ABA)- and hydrogen peroxide-activated TFArabidopsis thaliana ACTIVATING FACTOR1(ATAF1) as a novel upstream regulator of senescence. ATAF1 executes its physiological role by affecting both key chloroplast maintenance and senescence-promoting TFs, namelyGOLDEN2-LIKE1(GLK1) andORESARA1(ARABIDOPSIS NAC092), respectively. Notably, while ATAF1 activatesORESARA1, it repressesGLK1expression by directly binding to their promoters, thereby generating a transcriptional output that shifts the physiological balance toward the progression of senescence. We furthermore demonstrate a key role of ATAF1 for ABA- and hydrogen peroxide-induced senescence, in accordance with a direct regulatory effect on ABA homeostasis genes, includingNINE-CIS-EPOXYCAROTENOID DIOXYGENASE3involved in ABA biosynthesis andABC TRANSPORTER G FAMILY MEMBER40, encoding an ABA transport protein. Thus, ATAF1 serves as a core transcriptional activator of senescence by coupling stress-related signaling with photosynthesis- and senescence-related transcriptional cascades.
Old and ancient trees are life history lottery winners and vital evolutionary resources for long-term adaptive capacity
Trees can live for many centuries with sustained fecundity and death is largely stochastic. We use a neutral stochastic model to examine tree demographic patterns that emerge over time, across a range of population sizes and empirically observed mortality rates. A small proportion of trees (~1% at 1.5% mortality) are life-history ‘lottery winners’, achieving ages >10–20× the median age. Maximum age increases with bigger populations and lower mortality rates. One-quarter of trees (~24%) achieve ages that are three to four times greater than the median age. Three age classes (mature, old and ancient) contribute unique evolutionary diversity across complex environmental cycles. Ancient trees are an emergent property of forests that requires many centuries to generate. They radically change variance in generation time and population fitness, bridging centennial environmental cycles. These life-history ‘lottery’ winners are vital to long-term forest adaptive capacity and provide invaluable data about environmental history and individual longevity. Old and ancient trees cannot be replaced through restoration or regeneration for many centuries. They must be protected to preserve their invaluable diversity.This paper examines the small proportion of trees that vastly outlive the median age for their species, and classify three age classes to analyse how these ‘lottery winners’ impact forests.
Hormonal Effects of an Enzymatically Hydrolyzed Animal Protein-Based Biostimulant (Pepton) in Water-Stressed Tomato Plants
Biostimulants may promote growth or alleviate the negative effects of abiotic stress on plant growth eventually resulting in enhanced yields. We examined the mechanism of action of an enzymatically hydrolyzed animal protein-based biostimulant (Pepton), which has previously been shown to benefit growth and yield in several horticultural crops, particularly under stressful conditions. Tomato plants were exposed to well-watered and water-stressed conditions in a greenhouse and the hormonal profiling of leaves was measured during and after the application of Pepton. Results showed that the Pepton application benefited antioxidant protection and exerted a major hormonal effect in leaves of water-stressed tomatoes by increasing the endogenous content of indole-3-acetic acid (auxin), -zeatin (cytokinin), and jasmonic acid. The enhanced jasmonic acid content may have contributed to an increased production of tocochromanols because plastochromanol-8 concentration per unit of chlorophyll was higher in Pepton-treated plants compared to controls. In conclusion, the tested Pepton application may exert a positive effect on hormonal balance and the antioxidant system of plants under water stress in an economically important crop, such as tomato plants.
Evidence of Drought Stress Memory in the Facultative CAM, Aptenia cordifolia: Possible Role of Phytohormones
Although plant responses to drought stress have been studied in detail in several plant species, including CAM plants, the occurrence of stress memory and possible mechanisms for its regulation are still very poorly understood. In an attempt to better understand the occurrence and possible mechanisms of regulation of stress memory in plants, we measured the concentrations of phytohormones in Aptenia cordifolia exposed to reiterated drought, together with various stress indicators, including leaf water contents, photosynthesis and mechanisms of photo- and antioxidant protection. Results showed that plants exposed to drought stress responded differently if previously challenged with a first drought. Gibberellin levels decreased upon exposure to the first drought and remained lower in double-stressed plants compared with those exposed to stress for the first time. In contrast, abscisic acid levels were higher in double- than single-stressed plants. This occurred in parallel with alterations in hydroperoxide levels, but not with malondialdehyde levels, thus suggesting an increased oxidation state that did not result in oxidative damage in double-stressed plants. It is concluded that (i) drought stress memory occurs in double-stressed A. cordifolia plants, (ii) both gibberellins and abscisic acid may play a role in plant response to repeated periods of drought, and (iii) changes in abscisic acid levels in double-stressed plants may have a positive effect by modulating changes in the cellular redox state with a role in signalling, rather than cause oxidative damage to the cell.
Biosynthesis, Metabolism and Function of Auxin, Salicylic Acid and Melatonin in Climacteric and Non-climacteric Fruits
Climacteric and non-climacteric fruits are differentiated by the ripening process, in particular by the involvement of ethylene, high respiration rates and the nature of the process, being autocatalytic or not, respectively. Here, we focus on the biosynthesis, metabolism and function of three compounds (auxin, salicylic acid and melatonin) sharing not only a common precursor (chorismate), but also regulatory functions in plants, and therefore in fruits. Aside from describing their biosynthesis in plants, with a particular emphasis on common precursors and points of metabolic diversion, we will discuss recent advances on their role in fruit ripening and the regulation of bioactive compounds accumulation, both in climacteric and non-climacteric fruits.