Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
46 result(s) for "Murai, Tsuyoshi"
Sort by:
Bile Acid Synthesis Disorders in Japan: Long-Term Outcome and Chenodeoxycholic Acid Treatment
BackgroundWe encountered 7 Japanese patients with bile acid synthesis disorders (BASD) including 3β-hydroxy-Δ5-C27-steroid dehydrogenase/isomerase (3β-HSD) deficiency (n = 3), Δ4-3-oxosteroid 5β-reductase (5β-reductase) deficiency (n = 3), and oxysterol 7α-hydroxylase deficiency (n = 1) over 21 years between 1996 and 2017.AimWe aimed to clarify long-term outcome in the 7 patients with BASD as well as long-term efficacy of chenodeoxycholic acid (CDCA) treatment in the 5 patients with 3β-HSD deficiency or 5β-reductase deficiency.MethodsDiagnoses were made from bile acid and genetic analyses. Bile acid analysis in serum and urine was performed using gas chromatography–mass spectrometry. Clinical and laboratory findings and bile acid profiles at diagnosis and most recent visit were retrospectively obtained from medical records. Long-term outcome included follow-up duration, treatments, growth, education/employment, complications of treatment, and other problems.ResultsMedians with ranges of current patient ages and duration of CDCA treatment are 10 years (8 to 43) and 10 years (8 to 21), respectively. All 7 patients, who had homozygous or compound heterozygous mutations in the HSD3B7, SRD5B1, or CYP7B1 gene, are currently in good health without liver dysfunction. In the 5 patients with CDCA treatment, hepatic function gradually improved following initiation. No adverse effects were noted.ConclusionsWe concluded that CDCA treatment is effective in 3β-HSD deficiency and 5β-reductase deficiency, as cholic acid has been in other countries. BASD carry a good prognosis following early diagnosis and initiation of long-term CDCA treatment.
Berberine alters gut microbial function through modulation of bile acids
Background Berberine (BBR) is a plant-based nutraceutical that has been used for millennia to treat diarrheal infections and in contemporary medicine to improve patient lipid profiles. Reduction in lipids, particularly cholesterol, is achieved partly through up-regulation of bile acid synthesis and excretion into the gastrointestinal tract (GI). The efficacy of BBR is also thought to be dependent on structural and functional alterations of the gut microbiome. However, knowledge of the effects of BBR on gut microbiome communities is currently lacking. Distinguishing indirect effects of BBR on bacteria through altered bile acid profiles is particularly important in understanding how dietary nutraceuticals alter the microbiome. Results Germfree mice were colonized with a defined minimal gut bacterial consortium capable of functional bile acid metabolism ( Bacteroides vulgatus, Bacteroides uniformis, Parabacteroides distasonis, Bilophila wadsworthia, Clostridium hylemonae, Clostridium hiranonis, Blautia producta ; B4PC2). Multi-omics (bile acid metabolomics, 16S rDNA sequencing, cecal metatranscriptomics) were performed in order to provide a simple in vivo model from which to identify network-based correlations between bile acids and bacterial transcripts in the presence and absence of dietary BBR. Significant alterations in network topology and connectivity in function were observed, despite similarity in gut microbial alpha diversity ( P =  0.30) and beta-diversity ( P  = 0.123) between control and BBR treatment. BBR increased cecal bile acid concentrations, ( P <  0.05), most notably deoxycholic acid (DCA) (P  < 0.001). Overall, analysis of transcriptomes and correlation networks indicates both bacterial species-specific responses to BBR, as well as functional commonalities among species, such as up-regulation of Na + /H + antiporter, cell wall synthesis/repair, carbohydrate metabolism and amino acid metabolism. Bile acid concentrations in the GI tract increased significantly during BBR treatment and developed extensive correlation networks with expressed genes in the B4PC2 community. Conclusions This work has important implications for interpreting the effects of BBR on structure and function of the complex gut microbiome, which may lead to targeted pharmaceutical interventions aimed to achieve the positive physiological effects previously observed with BBR supplementation.
Profiling of Urinary Glucuronidated Bile Acids across Age Groups
We investigated the age-dependent changes in urinary excretion of glucuronidated bile acids at the C-3 position. Bile acid 3-glucuronides accounted for 0.5% of urinary bile acids in neonates, and the proportion of bile acid 3-glucuronides plateaued at 1–3 years of age. The 3-glucuronides of secondary bile acids were first secreted at 3 months of age, the same time as the establishment of the gut bacterial flora in infants. A considerable portion of bile acid 3-glucuronides were present as non-amidated forms. Our results indicate dynamic hepatic enzyme activity in which the levels of uridine 5′-diphospho-glucuronosyltransferases (UGTs) differ by age group, with higher glucuronidation activity of UGTs towards nonamidated bile acids than amidated bile acids.
Rotor Syndrome: Glucuronidated Bile Acidemia From Defective Reuptake by Hepatocytes
Organic anion transporting polypeptide (OATP) 1B1 (gene, solute carrier organic anion transporter family member 1B1 [SLCO1B1]) and OATP1B3 (SLCO1B3) serve as transporters for hepatic uptake of important endogenous substances and several commonly prescribed drugs. Inactivation of both proteins together causes Rotor syndrome. How this OATP1B1/1B3 defect disturbs bile acid (BA) metabolism is largely unknown. In this study, we performed detailed BA analysis in 3 patients with genetically diagnosed Rotor syndrome. We found that BAs glucuronidated at the C‐3 position (BA‐3G) accounted for 50% or more of total BAs in these patients. In contrast but similarly to healthy controls, only trace amounts of BA‐3G were detected in patients with constitutional indocyanine green excretory defect (OATP1B3 deficiency) or sodium‐taurocholate cotransporting polypeptide (NTCP; gene, solute carrier family 10 member 1 [SLC10A1]) deficiency. Therefore, substantial amounts of BA‐3G are synthesized in hepatocytes. The cycling pathway of BA‐3G, consisting of excretion from upstream hepatocytes and uptake by downstream hepatocytes by OATP1B1/1B3 may exist to reduce the burden on upstream hepatocytes. Conclusion: Detailed BA analysis revealed glucuronidated bile acidemia in patients with Rotor syndrome. Further exploration of the physiologic role of glucuronidated BAs is necessary.
A Japanese prospective multicenter study of urinary oxysterols in biliary atresia
Diagnosis of biliary atresia (BA) can involve uncertainties. In the present prospective multicenter study, we considered whether urinary oxysterols represent a useful marker for diagnosis of BA in Japanese children. Subjects under 6 months old at 7 pediatric centers in Japan were prospectively enrolled, including patients with cholestasis and healthy controls (HC) without liver disease. Patients with cholestasis constituted 2 groups representing BA patients and others with cholestasis from other causes (non-BA). We quantitatively analyzed 7 oxysterols including 4β-, 20(S)-, 22(S)-, 22(R)-, 24(S)-, 25-, and 27-hydroxycholesterol by liquid chromatography/electrospray ionization-tandem mass spectrometry. Enrolled subjects included 14 with BA (median age 68 days; range 26–170) and 10 non-BA cholestatic controls (59; 14–162), as well as 10 HC (57; 25–120). Total urinary oxysterols were significantly greater in BA (median, 153.0 μmol/mol creatinine; range 24.1–486.7; P  < 0.001) and non-BA (36.2; 5.8–411.3; P  < 0.05) than in HC (2.7; 0.8–7.6). In patients with BA, urinary 27-hydroxycholesterol (3.61; 0.42–11.09; P  < 0.01) was significantly greater than in non-BA (0.71; 0–5.62). In receiver operating characteristic (ROC) curve analysis for distinguishing BA from non-BA, the area under the ROC curve for urinary 27-hydroxycholesterol was 0.83. In conclusion, this first report of urinary oxysterol analysis in patients with BA indicated that 27-hydroxycholesterol may be a useful marker for distinguishing BA from other causes of neonatal cholestasis.
Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians
Centenarians have a decreased susceptibility to ageing-associated illnesses, chronic inflammation and infectious diseases 1 – 3 . Here we show that centenarians have a distinct gut microbiome that is enriched in microorganisms that are capable of generating unique secondary bile acids, including various isoforms of lithocholic acid (LCA): iso-, 3-oxo-, allo-, 3-oxoallo- and isoallolithocholic acid. Among these bile acids, the biosynthetic pathway for isoalloLCA had not been described previously. By screening 68 bacterial isolates from the faecal microbiota of a centenarian, we identified Odoribacteraceae strains as effective producers of isoalloLCA both in vitro and in vivo. Furthermore, we found that the enzymes 5α-reductase (5AR) and 3β-hydroxysteroid dehydrogenase (3β-HSDH) were responsible for the production of isoalloLCA. IsoalloLCA exerted potent antimicrobial effects against Gram-positive (but not Gram-negative) multidrug-resistant pathogens, including Clostridioides difficile and Enterococcus faecium . These findings suggest that the metabolism of specific bile acids may be involved in reducing the risk of infection with pathobionts, thereby potentially contributing to the maintenance of intestinal homeostasis. The microbiota of centenarians (aged 100 years and older) comprise gut microorganisms that are capable of generating unique secondary bile acids, including isoallolithocholic acid, a bile acid with potent antimicrobial effects against Gram-positive—but not Gram-negative—multidrug-resistant pathogens.
Improved HPLC assay for lipid peroxides in human plasma using the internal standard of hydroperoxide
We have developed a sensitive reversed‐phase chemiluminescence HPLC approach for simultaneous quantitative and qualitative analyses of hydroperoxides of cholesteryl ester and TC in human plasma. Standard hydroperoxides of cholesteryl ester and TG and a novel internal standard (1‐tetradecanyl 3‐octadecenoyloxy‐5β‐cholan‐24‐oate monohydroperoxide) (I.S.) were chemically synthesized and the standard curves confirmed to be linear throughout the calibration range (1–1000 pmol). Within‐day and between‐day CV were less than 7%, and the recoveries were within the range of 84–93%. With sample size minimized to 0.1 mL of plasma for each run, plasma cholesteryl ester hydroperoxide levels were 189±87 nM (mean±SD) in healthy young (22–25 yr old; n=15, male/female=6∶9) and 210 ±69 nM in healthy elderly (39–60 yr old; n=6, male/female= 3∶3). TG hydroperoxide was not detected in healthy subjects. In patients with advanced liver failure (36–67 yr old; n=4, male/female=2∶2), hydroperoxide levels of plasma cholesteryl ester and TG were 11,903±9,553 nM and 3,318±1,590 nM, respectively, indicating an involvement of lipid oxidation. Sensitive and specific monitoring of plasma lipid peroxides using the present chemiluminescence HPLC approach with the synthesized I.S. may help our understanding of chemical and pathophysiological aspects of lipid peroxidation.
Simple chemical syntheses of TAG monohydroperoxides
For the purpose of synthesizing standards to be used in the quantification of TAG hydroperoxides, three TAG (1,2‐dioleoyl‐3‐palmitoylglycerol, 1‐oleoyl‐2‐linoleoyl‐3‐palmitoylglycerol, and triolein) monohydroperoxides were chemically synthesized as authentic specimens. TAG were prepared by using a simple condensation in pyridine of glycerol and the corresponding acid chlorides. These TAG were then converted into monohydroperoxides by a photosensitized peroxidation. The synthesized monohydroperoxides were analyzed by normal‐phase and RP‐HPLC. The results of normal‐phase HPLC analysis showed that monohydroperoxides from a corresponding TAG were a mixture of regioisomers. In RP‐HPLC, however, the regioisomers of monohydroperoxides were not separated and gave a single peak, which may improve the sensitivity for the detection of TAG monohydroperoxides. In this study TAG monohydroperoxide standards were synthesized; these will be useful for the study of yet unknown biological and pathological roles of TAG hydroperoxides.
Formation of secondary allo-bile acids by novel enzymes from gut Firmicutes
The gut microbiome of vertebrates is capable of numerous biotransformations of bile acids, which are responsible for intestinal lipid digestion and function as key nutrient-signaling molecules. The human liver produces bile acids from cholesterol predominantly in the A/B-trans orientation in which the sterol rings are kinked, as well as small quantities of A/B-cis oriented flat stereoisomers known as primary allo-bile acids. While the complex multi-step bile acid 7α-dehydroxylation pathway has been well-studied for conversion of kinked primary bile acids such as cholic acid (CA) and chenodeoxycholic acid (CDCA) to deoxycholic acid (DCA) and lithocholic acid (LCA), respectively, the enzymatic basis for the formation of flat stereoisomers allo-deoxycholic acid (allo-DCA) and allo-lithocholic acid (allo-LCA) by Firmicutes has remained unsolved for three decades. Here, we present a novel mechanism by which Firmicutes generate the flat bile acids allo-DCA and allo-LCA. The BaiA1 was shown to catalyze the final reduction from 3-oxo-allo-DCA to allo-DCA and 3-oxo-allo-LCA to allo-LCA. Phylogenetic and metagenomic analyses of human stool samples indicate that BaiP and BaiJ are encoded only in Firmicutes and differ from membrane-associated bile acid 5α-reductases recently reported in Bacteroidetes that indirectly generate allo-LCA from 3-oxo-Δ4-LCA. We further map the distribution of baiP and baiJ among Firmicutes in human metagenomes, demonstrating an increased abundance of the two genes in colorectal cancer (CRC) patients relative to healthy individuals. Competing Interest Statement The authors have declared no competing interest.