Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
471
result(s) for
"Murdoch, N"
Sort by:
The bearing capacity of asteroid (65803) Didymos estimated from boulder tracks
2024
The bearing capacity - the ability of a surface to support applied loads - is an important parameter for understanding and predicting the response of a surface. Previous work has inferred the bearing capacity and trafficability of specific regions of the Moon using orbital imagery and measurements of the boulder tracks visible on its surface. Here, we estimate the bearing capacity of the surface of an asteroid for the first time using DART/DRACO images of suspected boulder tracks on the surface of asteroid (65803) Didymos. Given the extremely low surface gravity environment, special attention is paid to the underlying assumptions of the geotechnical approach. The detailed analysis of the boulder tracks indicates that the boulders move from high to low gravitational potential, and provides constraints on whether the boulders may have ended their surface motion by entering a ballistic phase. From the 9 tracks identified with sufficient resolution to estimate their dimensions, we find an average boulder track width and length of 8.9
±
1.5 m and 51.6
±
13.3 m, respectively. From the track widths, the mean bearing capacity of Didymos is estimated to be 70 N/m
2
, implying that every 1 m
2
of Didymos’ surface at the track location can support only ~70 N of force before experiencing general shear failure. This value is at least 3 orders of magnitude less than the bearing capacity of dry sand on Earth, or lunar regolith.
Bearing capacity, the ability of a surface to support applied loads, is a critical property in planetary exploration to understand a surface’s response to landing or roving. Here, the bearing capacity of the asteroid Didymos is estimated using DART images of suspected boulder tracks on its surface.
Journal Article
Flexible Mode Modelling of the InSight Lander and Consequences for the SEIS Instrument
by
Knapmeyer-Endrun, B.
,
Alazard, D.
,
Murdoch, N.
in
Aerospace Technology and Astronautics
,
Appendages
,
Astrophysics and Astroparticles
2018
We present an updated model for estimating the lander mechanical noise on the InSight seismometer SEIS, taking into account the flexible modes of the InSight lander. This new flexible mode model uses the Satellite Dynamics Toolbox to compute the direct and the inverse dynamic model of a satellite composed of a main body fitted with one or several dynamic appendages. Through a detailed study of the sensitivity of our results to key environment parameters we find that the frequencies of the six dominant lander resonant modes increase logarithmically with increasing ground stiffness. On the other hand, the wind strength and the incoming wind angle modify only the signal amplitude but not the frequencies of the resonances. For the baseline parameters chosen for this study, the lander mechanical noise on the SEIS instrument is not expected to exceed the instrument total noise requirements. However, in the case that the lander mechanical noise is observable in the seismic data acquired by SEIS, this may provide a complementary method for studying the ground and wind properties on Mars.
Journal Article
Small Solar System Bodies as granular media
2019
Asteroids and other Small Solar System Bodies (SSSBs) are of high general and scientific interest in many aspects. The origin, formation, and evolution of our Solar System (and other planetary systems) can be better understood by analysing the constitution and physical properties of small bodies in the Solar System. Currently, two space missions (Hayabusa2, OSIRIS-REx) have recently arrived at their respective targets and will bring a sample of the asteroids back to Earth. Other small body missions have also been selected by, or proposed to, space agencies. The threat posed to our planet by near-Earth objects (NEOs) is also considered at the international level, and this has prompted dedicated research on possible mitigation techniques. The DART mission, for example, will test the kinetic impact technique. Even ideas for industrial exploitation have risen during the last years. Lastly, the origin of water and life on Earth appears to be connected to asteroids. Hence, future space mission projects will undoubtedly target some asteroids or other SSSBs. In all these cases and research topics, specific knowledge of the structure and mechanical behaviour of the surface as well as the bulk of those celestial bodies is crucial. In contrast to large telluric planets and dwarf planets, a large proportion of such small bodies is believed to consist of gravitational aggregates (‘rubble piles’) with no—or low—internal cohesion, with varying macro-porosity and surface properties (from smooth regolith covered terrain, to very rough collection of boulders), and varying topography (craters, depressions, ridges). Bodies with such structure can sustain some plastic deformation without being disrupted in contrast to the classical visco-elastic models that are generally valid for planets, dwarf planets, and large satellites. These SSSBs are hence better described through granular mechanics theories, which have been a subject of intense theoretical, experimental, and numerical research over the last four decades. This being the case, it has been necessary to use the theoretical, numerical and experimental tools developed within soil mechanics, granular dynamics, celestial mechanics, chemistry, condensed matter physics, planetary and computer sciences, to name the main ones, in order to understand the data collected and analysed by observational astronomy (visible, thermal, and radio), and different space missions. In this paper, we present a review of the multi-disciplinary research carried out by these different scientific communities in an effort to study SSSBs.
Journal Article
The genetic basis of mammalian neurulation
by
Murdoch, Jennifer N.
,
Copp, Andrew J.
,
Greene, Nicholas D. E.
in
Agriculture
,
Animal Genetics and Genomics
,
Animals
2003
Key Points
Neurulation is a well-known morphogenetic event of embryonic development that has important clinical consequences. The failure of neural tube closure leads to a group of common and severe malformations that are called neural tube defects (NTDs).
Although the morphology and cell biology of neurulation are well described, the underlying molecular mechanisms remain poorly understood.
More than 80 mutant mouse genes disrupt neurulation and lead to the development of NTDs. Analysis of these mutants allows an in-depth analysis of the developmental mechanisms that underlie neurulation.
This review identifies the main categories of genes that are required for each successive event of neurulation, and relates these functional gene groups to probable neurulation mechanisms.
Crucial molecular mechanisms of neurulation include the planar cell-polarity pathway, which is essential for the initiation of neural tube closure, and the sonic hedgehog signalling pathway, which regulates neural plate bending in the spinal region and probably also in the brain.
Other developmental mechanisms seem to be essential solely for cranial neurulation. These include contraction of apical actin microfilaments, emigration of the cranial neural crest, precisely regulated programmed cell death and a balance between neuroepithelial cell proliferation and differentiation.
The mutant mice also offer an opportunity to unravel the mechanisms by which folic acid prevents NTDs, and to develop new therapies for folate-resistant defects. NTDs in some mutant mouse strains can be prevented by folic acid, whereas, in one particular strain, folate is ineffective but inositol can prevent NTDs.
More than 80 mutant mouse genes disrupt neurulation and allow an in-depth analysis of the underlying developmental mechanisms. Although many of the genetic mutants have been studied in only rudimentary detail, several molecular pathways can already be identified as crucial for normal neurulation. These include the planar cell-polarity pathway, which is required for the initiation of neural tube closure, and the sonic hedgehog signalling pathway that regulates neural plate bending. Mutant mice also offer an opportunity to unravel the mechanisms by which folic acid prevents neural tube defects, and to develop new therapies for folate-resistant defects.
Journal Article
Near-Field Seismic Propagation and Coupling Through Mars’ Regolith: Implications for the InSight Mission
by
Myhill, R.
,
Murdoch, N.
,
Wookey, J.
in
Aerospace Technology and Astronautics
,
Amplification
,
Amplitudes
2018
NASA’s InSight Mission will deploy two three-component seismometers on Mars in 2018. These short period and very broadband seismometers will be mounted on a three-legged levelling system, which will sit directly on the sandy regolith some 2–3 meters from the lander. Although the deployment will be covered by a wind and thermal shield, atmospheric noise is still expected to couple to the seismometers through the regolith. Seismic activity on Mars is expected to be significantly lower than on Earth, so a characterisation of the extent of coupling to noise and seismic signals is an important step towards maximising scientific return.
In this study, we conduct field testing on a simplified model of the seismometer assembly. We constrain the transfer function between the wind and thermal shield and tripod-mounted seismometers over a range of frequencies (1–40 Hz) relevant to the deployment on Mars. At 1–20 Hz the displacement amplitude ratio is approximately constant, with a value that depends on the site (0.03–0.06). The value of the ratio in this range is 25–50% of the value expected from the deformation of a homogeneous isotropic elastic halfspace. At 20–40 Hz, the ratio increases as a result of resonance between the tripod mass and regolith. We predict that mounting the InSight instruments on a tripod will not adversely affect the recorded amplitudes of vertical seismic energy, although particle motions will be more complex than observed in recordings generated by more conventional buried deployments. Higher frequency signals will be amplified by tripod-regolith resonance, probably reaching peak-amplification at
∼
50
Hz. The tripod deployment will lose sensitivity at frequencies
>
50
Hz as a result of the tripod mass and compliant regolith.
We also investigate the attenuation of seismic energy within the shallow regolith covering the range of seismometer deployment distances. The amplitude of surface displacement decays as
r
−
n
, where
1.5
<
n
<
2
. This exceeds the value expected for a homogeneous isotropic elastic halfspace (
n
∼
1
), and reflects an increase in Young’s modulus with depth. We present an updated model of lander noise which takes this enhanced attenuation into account.
Journal Article
Evidence for multi-fragmentation and mass shedding of boulders on rubble-pile binary asteroid system (65803) Didymos
by
Beccarelli, J.
,
Tusberti, F.
,
Deshapriya, J. D. P.
in
639/33/445/848
,
704/445/215
,
704/445/536
2024
Asteroids smaller than 10 km are thought to be rubble piles formed from the reaccumulation of fragments produced in the catastrophic disruption of parent bodies. Ground-based observations reveal that some of these asteroids are today binary systems, in which a smaller secondary orbits a larger primary asteroid. However, how these asteroids became binary systems remains unclear. Here, we report the analysis of boulders on the surface of the stony asteroid (65803) Didymos and its moonlet, Dimorphos, from data collected by the NASA DART mission. The size-frequency distribution of boulders larger than 5 m on Dimorphos and larger than 22.8 m on Didymos confirms that both asteroids are piles of fragments produced in the catastrophic disruption of their progenitors. Dimorphos boulders smaller than 5 m have size best-fit by a Weibull distribution, which we attribute to a multi-phase fragmentation process either occurring during coalescence or during surface evolution. The density per km
2
of Dimorphos boulders ≥1 m is 2.3x with respect to the one obtained for (101955) Bennu, while it is 3.0x with respect to (162173) Ryugu. Such values increase once Dimorphos boulders ≥5 m are compared with Bennu (3.5x), Ryugu (3.9x) and (25143) Itokawa (5.1x). This is of interest in the context of asteroid studies because it means that contrarily to the single bodies visited so far, binary systems might be affected by subsequential fragmentation processes that largely increase their block density per km
2
. Direct comparison between the surface distribution and shapes of the boulders on Didymos and Dimorphos suggest that the latter inherited its material from the former. This finding supports the hypothesis that some asteroid binary systems form through the spin up and mass shedding of a fraction of the primary asteroid.
By comparing boulders’ surface distribution and shapes on the binary asteroid system, Didymos, authors show that both bodies are rubble piles produced in their progenitor catastrophic disruption and that the secondary, Dimorphos, likely inherited its material from the primary through spin up and mass shedding.
Journal Article
Fast boulder fracturing by thermal fatigue detected on stony asteroids
by
Mazzotta Epifani, E.
,
Beccarelli, J.
,
Tusberti, F.
in
639/33/445/3928
,
639/33/445/848
,
704/445/536
2024
Spacecraft observations revealed that rocks on carbonaceous asteroids, which constitute the most numerous class by composition, can develop millimeter-to-meter-scale fractures due to thermal stresses. However, signatures of this process on the second-most populous group of asteroids, the S-complex, have been poorly constrained. Here, we report observations of boulders’ fractures on Dimorphos, which is the moonlet of the S-complex asteroid (65803) Didymos, the target of NASA’s Double Asteroid Redirection Test (DART) planetary defense mission. We show that the size-frequency distribution and orientation of the mapped fractures are consistent with formation through thermal fatigue. The fractures’ preferential orientation supports that these have originated in situ on Dimorphos boulders and not on Didymos boulders later transferred to Dimorphos. Based on our model of the fracture propagation, we propose that thermal fatigue on rocks exposed on the surface of S-type asteroids can form shallow, horizontally propagating fractures in much shorter timescales (100 kyr) than in the direction normal to the boulder surface (order of Myrs). The presence of boulder fields affected by thermal fracturing on near-Earth asteroid surfaces may contribute to an enhancement in the ejected mass and momentum from kinetic impactors when deflecting asteroids.
Here, authors study boulders’ fractures on S-type asteroid, Dimorphos, and show that their size-frequency distribution and orientation are consistent with formation through thermal fatigue. Such fractures seem to propagate horizontally much faster (~kyr) than normal to the boulder’s surface (~Myr).
Journal Article
Results from InSight Robotic Arm Activities
by
Langlais, B.
,
Maki, J.
,
Spohn, T.
in
Aerospace Technology and Astronautics
,
Astrophysics
,
Astrophysics and Astroparticles
2023
The InSight lander carried an Instrument Deployment System (IDS) that included an Instrument Deployment Arm (IDA), scoop, five finger “claw” grapple, forearm-mounted Instrument Deployment Camera (IDC) requiring arm motion to image a target, and landermounted Instrument Context Camera (ICC), designed to image the workspace, and to place the instruments onto the surface. As originally proposed, the IDS included a previously built arm and flight spare black and white cameras and had no science objectives or requirements, or expectation to be used after instrument deployment (90 sols). During project development the detectors were upgraded to color, and it was recognized that the arm could be used to carry out a wide variety of activities that would enable both geology and physical properties investigations. During surface operations for two martian years, the IDA was used during major campaigns to image the surface around the lander, to deploy the instruments, to assist the mole in penetrating beneath the surface, to bury a portion of the seismometer tether, to clean dust from the solar arrays to increase power, and to conduct a surface geology investigation including soil mechanics and physical properties experiments. No other surface mission has engaged in such a sustained and varied campaign of arm and scoop activities directed at such a diverse suite of objectives. Images close to the surface and continuous meteorology measurements provided important constraints on the threshold friction wind speed needed to initiate aeolian saltation and surface creep. The IDA was used extensively for almost 22 months to assist the mole in penetrating into the subsurface. Soil was scraped into piles and dumped onto the seismometer tether six times in an attempt to bury the tether and ∼ 30% was entrained in the wind and dispersed downwind 1-2 m, darkening the surface. Seven solar array cleaning experiments were conducted by dumping scoops of soil from 35 cm above the lander deck during periods of high wind that dispersed the sand onto the panels that kicked dust off of the panels into suspension in the atmosphere, thereby increasing the power by ∼15% during this period. Final IDA activities included an indentation experiment that used the IDA scoop to push on the ground to measure the plastic deformation of the soil that complemented soil mechanics measurements from scoop interactions with the surface, and two experiments in which SEIS measured the tilt from the arm
pressing on the ground to derive near surface elastic properties.
Journal Article
Exploration of sub-field microclimates and winter temperatures: Implications for precision agriculture
by
Walley, Samantha
,
Schultze, Steven R
,
Campbell, Murdoch N
in
Aeration
,
Agriculture
,
Crop production
2021
The field of precision agriculture has brought the concept for “big data” to farming by bringing sensor technology into the field allowing growers to make more efficient management decisions. However much of the research and practice of precision agriculture has focused on soil-related issues while sub-field microclimates have been mostly unstudied despite their known importance to crop production. This study sought to explore the differences in temperature at a sub-field level during an entire season using weather microsensors recording data every minute from 11 Dec 2017 to 11 Apr 2018. Twenty-two cost-effective sensors were placed within a ~ .5 ha area satsuma orange (Citrus unshiu) grove along the Gulf Coast on Baldwin County, Alabama. The sensors were placed in aerated housings in a vertical column on the west face of eleven trees at a height of 1 and 2 m off the ground. We focus on several events where temperatures hovered near 0 °C or near − 7 °C, a temperature known to damage satsuma trees and find that temperatures can vary by as much as 1.5 to 2 °C at the same moment in the same grove. Extreme cold events were also found to be non-uniform within the grove, and the response was seen on a tree-by-tree basis where increased exposure to < − 7 °C temperatures led to increase defoliation (r2 = 0.92) and lower fruit count in the following year (r2 = 0.71). We discuss the implication of these differences in temperature and what it may mean for the future of precision agriculture.
Journal Article
Physical properties of asteroid Dimorphos as derived from the DART impact
2024
On 26 September 2022, NASA’s Double Asteroid Redirection Test (DART) mission successfully impacted Dimorphos, the natural satellite of the binary near-Earth asteroid (65803) Didymos. Numerical simulations of the impact provide a means to find the surface material properties and structures of the target that are consistent with the observed momentum deflection efficiency, ejecta cone geometry and ejected mass. Our simulation that best matches the observations indicates that Dimorphos is weak, with a cohesive strength of less than a few pascals, like asteroids (162173) Ryugu and (101955) Bennu. We find that the bulk density of Dimorphos
ρ
B
is lower than ~2,400 kg m
−
3
and that it has a low volume fraction of boulders (≲40 vol%) on the surface and in the shallow subsurface, which are consistent with data measured by the DART experiment. These findings suggest that Dimorphos is a rubble pile that might have formed through rotational mass shedding and reaccumulation from Didymos. Our simulations indicate that the DART impact caused global deformation and resurfacing of Dimorphos. ESA’s upcoming Hera mission may find a reshaped asteroid rather than a well-defined crater.
Numerical simulations of the DART impact on asteroid Didymos’s moon Dimorphos highlight its rubble-pile nature with a low bulk density and boulder volume fraction. These results indicate that Dimorphos formed from reaccumulated material shed from Didymos via rotation or impact.
Journal Article