Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
8,742 result(s) for "Murphy, G"
Sort by:
HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition
The hypothalamic–pituitary–adrenal (HPA) axis has been implicated in the pathophysiology of a variety of mood and cognitive disorders. Neuroendocrine studies have demonstrated HPA axis overactivity in major depression, a relationship of HPA axis activity to cognitive performance and a potential role of HPA axis genetic variation in cognition. The present study investigated the simultaneous roles HPA axis activity, clinical symptomatology and HPA genetic variation play in cognitive performance. Patients with major depression with psychotic major depression (PMD) and with nonpsychotic major depression (NPMD) and healthy controls (HC) were studied. All participants underwent a diagnostic interview and psychiatric ratings, a comprehensive neuropsychological battery, overnight hourly blood sampling for cortisol and genetic assessment. Cognitive performance differed as a function of depression subtype. Across all subjects, cognitive performance was negatively correlated with higher cortisol, and PMD patients had higher cortisol than did NPMDs and HCs. Cortisol, clinical symptoms and variation in genes, NR3C1 (glucocorticoid receptor; GR) and NR3C2 (mineralocorticoid receptor; MR) that encode for GRs and MRs, predicted cognitive performance. Beyond the effects of cortisol, demographics and clinical symptoms, NR3C1 variation predicted attention and working memory, whereas NR3C2 polymorphisms predicted memory performance. These findings parallel the distribution of GR and MR in primate brain and their putative roles in specific cognitive tasks. HPA axis genetic variation and activity were important predictors of cognition across the entire sample of depressed subjects and HR. GR and MR genetic variation predicted unique cognitive functions, beyond the influence of cortisol and clinical symptoms. GR genetic variation was implicated in attention and working memory, whereas MR was implicated in verbal memory.
Lost kingdoms : Hindu-Buddhist sculpture of early Southeast Asia /
\"Numerous Hindu and Buddhist kingdoms flourished in Southeast Asia from the 5th to the 9th century, yet until recently few concrete details were known about them. Lost Kingdoms reveals newly discovered architectural and sculptural relics from this region, which provide key insights into the formerly mysterious kingdoms. The first publication to use sculpture as a lens to explore this period of Southeast Asian history, Lost Kingdoms offers a significant contribution and a fresh approach to the study of cultures in Cambodia, Thailand, Burma, and other countries\"--Distributor's website.
Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan
Over the past decade, in-vivo MRI studies have provided many invaluable insights into the neural substrates underlying autism spectrum disorder (ASD), which is now known to be associated with neurodevelopmental variations in brain anatomy, functioning, and connectivity. These systems-level features of ASD pathology seem to develop differentially across the human lifespan so that the cortical abnormalities that occur in children with ASD differ from those noted at other stages of life. Thus, investigation of the brain in ASD poses particular methodological challenges, which must be addressed to enable the comparison of results across studies. Novel analytical approaches are also being developed to facilitate the translation of findings from the research to the clinical setting. In the future, the insights provided by human neuroimaging studies could contribute to biomarker development for ASD and other neurodevelopmental disorders, and to new approaches to diagnosis and treatment.
The sensitivity of PM2.5 acidity to meteorological parameters and chemical composition changes: 10-year records from six Canadian monitoring sites
Aerosol pH is difficult to measure directly but can be calculated if the chemical composition is known with sufficient accuracy and precision to calculate the aerosol water content and the H+ concentration through the equilibrium among acids and their conjugate bases. In practical terms, simultaneous measurements of at least one semi-volatile constituent, e.g. NH3 or HNO3, are required to provide a constraint on the calculation of pH. Long-term records of aerosol pH are scarce due to the limited monitoring of NH3 in conjunction with PM2.5. In this study, 10-year (2007–2016) records of pH of PM2.5 at six eastern Canadian sites were calculated using the E-AIM II model with the input of gaseous NH3, gaseous HNO3 and major water-soluble inorganic ions in PM2.5 provided by Canada's National Air Pollution Surveillance (NAPS) Program. Clear seasonal cycles of aerosol pH were found with lower pH (∼2) in summer and higher pH (∼3) in winter consistently across all six sites, while the day-to-day variations of aerosol pH were higher in winter compared to summer. Tests of the sensitivity of aerosol pH to meteorological parameters demonstrate that the changes in ambient temperature largely drive the seasonal cycle of aerosol pH. The sensitivity of pH to chemical composition shows that pH has different responses to the changes in chemical composition in different seasons. During summertime, aerosol pH was mainly determined by temperature with limited impact from changes in NHx or sulfate concentrations. However, in wintertime, both meteorological parameters and chemical composition contribute to the variations in aerosol pH, resulting in the larger variation during wintertime. This study reveals that the sensitivity of aerosol pH to chemical composition is distinctly different under different meteorological conditions and needs to be carefully examined for any particular region.
The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents
Background and Objectives: The gut hormones peptide YY (PYY) and glucagon-like peptide 1 (GLP-1) acutely suppress appetite. The short chain fatty acid (SCFA) receptor, free fatty acid receptor 2 (FFA2) is present on colonic enteroendocrine L cells, and a role has been suggested for SCFAs in appetite regulation. Here, we characterise the in vitro and in vivo effects of colonic propionate on PYY and GLP-1 release in rodents, and investigate the role of FFA2 in mediating these effects using FFA2 knockout mice. Methods: We used Wistar rats, C57BL6 mice and free fatty acid receptor 2 knockout (FFA −/− ) mice on a C57BL6 background to explore the impact of the SCFA propionate on PYY and GLP-1 release. Isolated colonic crypt cultures were used to assess the effects of propionate on gut hormone release in vitro . We subsequently developed an in vivo technique to assess gut hormone release into the portal vein following colonic infusion of propionate. Results: Propionate stimulated the secretion of both PYY and GLP-1 from wild-type primary murine colonic crypt cultures. This effect was significantly attenuated in cultures from FFA2 −/− mice. Intra-colonic infusion of propionate elevated PYY and GLP-1 levels in jugular vein plasma in rats and in portal vein plasma in both rats and mice. However, propionate did not significantly stimulate gut hormone release in FFA2 −/− mice. Conclusions: Intra-colonic administration of propionate stimulates the concurrent release of both GLP-1 and PYY in rats and mice. These data demonstrate that FFA2 deficiency impairs SCFA-induced gut hormone secretion both in vitro and in vivo .
Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function
A key metabolic activity of the gut microbiota is the fermentation of non-digestible carbohydrate, which generates short-chain fatty acids (SCFAs) as the principal end products. SCFAs are absorbed from the gut lumen and modulate host metabolic responses at different organ sites. Evidence suggests that these organ sites include skeletal muscle, the largest organ in humans, which plays a pivotal role in whole-body energy metabolism. In this Review, we evaluate the evidence indicating that SCFAs mediate metabolic cross-talk between the gut microbiota and skeletal muscle. We discuss the effects of three primary SCFAs (acetate, propionate and butyrate) on lipid, carbohydrate and protein metabolism in skeletal muscle, and we consider the potential mechanisms involved. Furthermore, we highlight the emerging roles of these gut-derived metabolites in skeletal muscle function and exercise capacity, present limitations in current knowledge and provide suggestions for future work. Frampton et al. review emerging understanding of how the three primary gut-derived short-chain fatty acids—acetate, propionate and butyrate—affect skeletal muscle metabolism and function.
Comparison of adaptive pacing therapy, cognitive behaviour therapy, graded exercise therapy, and specialist medical care for chronic fatigue syndrome (PACE): a randomised trial
Trial findings show cognitive behaviour therapy (CBT) and graded exercise therapy (GET) can be effective treatments for chronic fatigue syndrome, but patients' organisations have reported that these treatments can be harmful and favour pacing and specialist health care. We aimed to assess effectiveness and safety of all four treatments. In our parallel-group randomised trial, patients meeting Oxford criteria for chronic fatigue syndrome were recruited from six secondary-care clinics in the UK and randomly allocated by computer-generated sequence to receive specialist medical care (SMC) alone or with adaptive pacing therapy (APT), CBT, or GET. Primary outcomes were fatigue (measured by Chalder fatigue questionnaire score) and physical function (measured by short form-36 subscale score) up to 52 weeks after randomisation, and safety was assessed primarily by recording all serious adverse events, including serious adverse reactions to trial treatments. Primary outcomes were rated by participants, who were necessarily unmasked to treatment assignment; the statistician was masked to treatment assignment for the analysis of primary outcomes. We used longitudinal regression models to compare SMC alone with other treatments, APT with CBT, and APT with GET. The final analysis included all participants for whom we had data for primary outcomes. This trial is registered at http://isrctn.org, number ISRCTN54285094. We recruited 641 eligible patients, of whom 160 were assigned to the APT group, 161 to the CBT group, 160 to the GET group, and 160 to the SMC-alone group. Compared with SMC alone, mean fatigue scores at 52 weeks were 3·4 (95% CI 1·8 to 5·0) points lower for CBT (p=0·0001) and 3·2 (1·7 to 4·8) points lower for GET (p=0·0003), but did not differ for APT (0·7 [−0·9 to 2·3] points lower; p=0·38). Compared with SMC alone, mean physical function scores were 7·1 (2·0 to 12·1) points higher for CBT (p=0·0068) and 9·4 (4·4 to 14·4) points higher for GET (p=0·0005), but did not differ for APT (3·4 [−1·6 to 8·4] points lower; p=0·18). Compared with APT, CBT and GET were associated with less fatigue (CBT p=0·0027; GET p=0·0059) and better physical function (CBT p=0·0002; GET p<0·0001). Subgroup analysis of 427 participants meeting international criteria for chronic fatigue syndrome and 329 participants meeting London criteria for myalgic encephalomyelitis yielded equivalent results. Serious adverse reactions were recorded in two (1%) of 159 participants in the APT group, three (2%) of 161 in the CBT group, two (1%) of 160 in the GET group, and two (1%) of 160 in the SMC-alone group. CBT and GET can safely be added to SMC to moderately improve outcomes for chronic fatigue syndrome, but APT is not an effective addition. UK Medical Research Council, Department of Health for England, Scottish Chief Scientist Office, Department for Work and Pensions.
Modeling flexible behavior in childhood to adulthood shows age-dependent learning mechanisms and less optimal learning in autism in each age group
Flexible behavior is critical for everyday decision-making and has been implicated in restricted, repetitive behaviors (RRB) in autism spectrum disorder (ASD). However, how flexible behavior changes developmentally in ASD remains largely unknown. Here, we used a developmental approach and examined flexible behavior on a probabilistic reversal learning task in 572 children, adolescents, and adults (ASD N = 321; typical development [TD] N = 251). Using computational modeling, we quantified latent variables that index mechanisms underlying perseveration and feedback sensitivity. We then assessed these variables in relation to diagnosis, developmental stage, core autism symptomatology, and associated psychiatric symptoms. Autistic individuals showed on average more perseveration and less feedback sensitivity than TD individuals, and, across cases and controls, older age groups showed more feedback sensitivity than younger age groups. Computational modeling revealed that dominant learning mechanisms underpinning flexible behavior differed across developmental stages and reduced flexible behavior in ASD was driven by less optimal learning on average within each age group. In autistic children, perseverative errors were positively related to anxiety symptoms, and in autistic adults, perseveration (indexed by both task errors and model parameter estimates) was positively related to RRB. These findings provide novel insights into reduced flexible behavior in relation to clinical symptoms in ASD.
Gut hormones and the regulation of energy homeostasis
Food intake, energy expenditure and body adiposity are homeostatically regulated. Central and peripheral signals communicate information about the current state of energy balance to key brain regions, including the hypothalamus and brainstem. Hunger and satiety represent coordinated responses to these signals, which include neural and hormonal messages from the gut. In recent years our understanding of how neural and hormonal brain-gut signalling regulates energy homeostasis has advanced considerably. Gut hormones have various physiological functions that include specifically targeting the brain to regulate appetite. New research suggests that gut hormones can be used to specifically regulate energy homeostasis in humans, and offer a target for anti-obesity drugs.