Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
25
result(s) for
"Murugesh, Deepa K."
Sort by:
Single-cell RNA-Seq reveals changes in immune landscape in post-traumatic osteoarthritis
by
Loots, Gabriela G.
,
Amiri, Beheshta
,
Sebastian, Aimy
in
Anterior cruciate ligament
,
Antibodies
,
Cartilage
2022
Osteoarthritis (OA) is the most common joint disease, affecting over 300 million people world-wide. Accumulating evidence attests to the important roles of the immune system in OA pathogenesis. Understanding the role of various immune cells in joint degeneration or joint repair after injury is vital for improving therapeutic strategies for treating OA. Post-traumatic osteoarthritis (PTOA) develops in ~50% of individuals who have experienced an articular trauma like an anterior cruciate ligament (ACL) rupture. Here, using the high resolution of single-cell RNA sequencing, we delineated the temporal dynamics of immune cell accumulation in the mouse knee joint after ACL rupture. Our study identified multiple immune cell types in the joint including neutrophils, monocytes, macrophages, B cells, T cells, NK cells and dendritic cells. Monocytes and macrophage populations showed the most dramatic changes after injury. Further characterization of monocytes and macrophages reveled 9 major subtypes with unique transcriptomics signatures, including a tissue resident Lyve1 hi Folr2 hi macrophage population and Trem2 hi Fcrls + recruited macrophages, both showing enrichment for phagocytic genes and growth factors such as Igf1 , Pdgfa and Pdgfc. We also identified several genes induced or repressed after ACL injury in a cell type-specific manner. This study provides new insight into PTOA-associated changes in the immune microenvironment and highlights macrophage subtypes that may play a role in joint repair after injury.
Journal Article
CD206+ Trem2+ macrophage accumulation in the murine knee joint after injury is associated with protection against post-traumatic osteoarthritis in MRL/MpJ mice
by
Loots, Gabriela G.
,
Davalos, Oscar A.
,
Amiri, Beheshta
in
60 APPLIED LIFE SCIENCES
,
Animals
,
Anterior cruciate ligament
2025
Post-traumatic osteoarthritis (PTOA) is a painful joint disease characterized by the degradation of bone, cartilage, and other connective tissues in the joint. PTOA is initiated by trauma to joint-stabilizing tissues, such as the anterior cruciate ligament, medial meniscus, or by intra-articular fractures. In humans, ~50% of joint injuries progress to PTOA, while the rest spontaneously resolve. To better understand molecular programs contributing to PTOA development or resolution, we examined injury-induced fluctuations in immune cell populations and transcriptional shifts by single-cell RNA sequencing of synovial joints in PTOA-susceptible C57BL/6J (B6) and PTOA-resistant MRL/MpJ (MRL) mice. We identified significant differences in monocyte and macrophage subpopulations between MRL and B6 joints. A potent myeloid-driven anti-inflammatory response was observed in MRL injured joints that significantly contrasted the pro-inflammatory signaling seen in B6 joints. Multiple CD206
+
macrophage populations classically described as M2 were found enriched in MRL injured joints. These CD206
+
macrophages also robustly expressed
Trem2
, a receptor involved in inflammation and myeloid cell activation. These data suggest that the PTOA resistant MRL mouse strain displays an enhanced capacity of clearing debris and apoptotic cells induced by inflammation after injury due to an increase in activated M2 macrophages within the synovial tissue and joint space.
Journal Article
Wnt co-receptors Lrp5 and Lrp6 differentially mediate Wnt3a signaling in osteoblasts
by
Loots, Gabriela G.
,
Hum, Nicholas R.
,
Sebastian, Aimy
in
60 APPLIED LIFE SCIENCES
,
Biocompatibility
,
Biology and Life Sciences
2017
Wnt3a is a major regulator of bone metabolism however, very few of its target genes are known in bone. Wnt3a preferentially signals through transmembrane receptors Frizzled and co-receptors Lrp5/6 to activate the canonical signaling pathway. Previous studies have shown that the canonical Wnt co-receptors Lrp5 and Lrp6 also play an essential role in normal postnatal bone homeostasis, yet, very little is known about specific contributions by these co-receptors in Wnt3a-dependent signaling. We used high-throughput sequencing technology to identify target genes regulated by Wnt3a in osteoblasts and to elucidate the role of Lrp5 and Lrp6 in mediating Wnt3a signaling. Our study identified 782 genes regulated by Wnt3a in primary calvarial osteoblasts. Wnt3a up-regulated the expression of several key regulators of osteoblast proliferation/ early stages of differentiation while inhibiting genes expressed in later stages of osteoblastogenesis. We also found that Lrp6 is the key mediator of Wnt3a signaling in osteoblasts and Lrp5 played a less significant role in mediating Wnt3a signaling.
Journal Article
Single-Cell RNA-Seq Reveals Transcriptomic Heterogeneity and Post-Traumatic Osteoarthritis-Associated Early Molecular Changes in Mouse Articular Chondrocytes
by
Loots, Gabriela G.
,
Sebastian, Aimy
,
Christiansen, Blaine A.
in
Antibodies
,
Arthritis
,
BASIC BIOLOGICAL SCIENCES
2021
Articular cartilage is a connective tissue lining the surfaces of synovial joints. When the cartilage severely wears down, it leads to osteoarthritis (OA), a debilitating disease that affects millions of people globally. The articular cartilage is composed of a dense extracellular matrix (ECM) with a sparse distribution of chondrocytes with varying morphology and potentially different functions. Elucidating the molecular and functional profiles of various chondrocyte subtypes and understanding the interplay between these chondrocyte subtypes and other cell types in the joint will greatly expand our understanding of joint biology and OA pathology. Although recent advances in high-throughput OMICS technologies have enabled molecular-level characterization of tissues and organs at an unprecedented resolution, thorough molecular profiling of articular chondrocytes has not yet been undertaken, which may be in part due to the technical difficulties in isolating chondrocytes from dense cartilage ECM. In this study, we profiled articular cartilage from healthy and injured mouse knee joints at a single-cell resolution and identified nine chondrocyte subtypes with distinct molecular profiles and injury-induced early molecular changes in these chondrocytes. We also compared mouse chondrocyte subpopulations to human chondrocytes and evaluated the extent of molecular similarity between mice and humans. This work expands our view of chondrocyte heterogeneity and rapid molecular changes in chondrocyte populations in response to joint trauma and highlights potential mechanisms that trigger cartilage degeneration.
Journal Article
Global Gene Expression Analysis Identifies Age-Related Differences in Knee Joint Transcriptome during the Development of Post-Traumatic Osteoarthritis in Mice
by
Loots, Gabriela G.
,
Sebastian, Aimy
,
Mendez, Melanie E.
in
60 APPLIED LIFE SCIENCES
,
Age groups
,
Aging
2020
Aging and injury are two major risk factors for osteoarthritis (OA). Yet, very little is known about how aging and injury interact and contribute to OA pathogenesis. In the present study, we examined age- and injury-related molecular changes in mouse knee joints that could contribute to OA. Using RNA-seq, first we profiled the knee joint transcriptome of 10-week-old, 62-week-old, and 95-week-old mice and found that the expression of several inflammatory-response related genes increased as a result of aging, whereas the expression of several genes involved in cartilage metabolism decreased with age. To determine how aging impacts post-traumatic arthritis (PTOA) development, the right knee joints of 10-week-old and 62-week-old mice were injured using a non-invasive tibial compression injury model and injury-induced structural and molecular changes were assessed. At six-week post-injury, 62-week-old mice displayed significantly more cartilage degeneration and osteophyte formation compared with young mice. Although both age groups elicited similar transcriptional responses to injury, 62-week-old mice had higher activation of inflammatory cytokines than 10-week-old mice, whereas cartilage/bone metabolism genes had higher expression in 10-week-old mice, suggesting that the differential expression of these genes might contribute to the differences in PTOA severity observed between these age groups.
Journal Article
Comparative Transcriptomics Identifies Novel Genes and Pathways Involved in Post-Traumatic Osteoarthritis Development and Progression
by
Loots, Gabriela G.
,
Sebastian, Aimy
,
Mendez, Melanie E.
in
60 APPLIED LIFE SCIENCES
,
ACL injury
,
Animals
2018
Anterior cruciate ligament (ACL) injuries often result in post-traumatic osteoarthritis (PTOA). To better understand the molecular mechanisms behind PTOA development following ACL injury, we profiled ACL injury-induced transcriptional changes in knee joints of three mouse strains with varying susceptibility to OA: STR/ort (highly susceptible), C57BL/6J (moderately susceptible) and super-healer MRL/MpJ (not susceptible). Right knee joints of the mice were injured using a non-invasive tibial compression injury model and global gene expression was quantified before and at 1-day, 1-week, and 2-weeks post-injury using RNA-seq. Following injury, injured and uninjured joints of STR/ort and injured C57BL/6J joints displayed significant cartilage degeneration while MRL/MpJ had little cartilage damage. Gene expression analysis suggested that prolonged inflammation and elevated catabolic activity in STR/ort injured joints, compared to the other two strains may be responsible for the severe PTOA phenotype observed in this strain. MRL/MpJ had the lowest expression values for several inflammatory cytokines and catabolic enzymes activated in response to ACL injury. Furthermore, we identified several genes highly expressed in MRL/MpJ compared to the other two strains including B4galnt2 and Tpsab1 which may contribute to enhanced healing in the MRL/MpJ. Overall, this study has increased our knowledge of early molecular changes associated with PTOA development.
Journal Article
Spatiotemporal analysis of lung immune dynamics in lethal Coccidioides posadasii infection
by
Loots, Gabriela G.
,
Davalos, Oscar A.
,
Leon, Nicole F.
in
Adaptive immunity
,
Animals
,
Bronchitis
2024
Coccidioidomycosis, commonly known as Valley fever, is a lung disease caused by the inhalation of Coccidioides fungi, which is prevalent in the Southwestern United States, Mexico, and parts of Central and South America. With climate change potentially expanding the geographic range of this fungus, understanding the immune responses during severe infections is crucial. Our study used advanced techniques to analyze lung responses during Coccidioides infection, identifying specific immune cells that may contribute to tissue damage and fibrosis. These findings provide new insights into the disease mechanisms and suggest potential targets for therapeutic intervention, which could improve outcomes for patients suffering from severe Valley fever.
Journal Article
Antibiotic Treatment Prior to Injury Abrogates the Detrimental Effects of LPS in STR/ort Mice Susceptible to Osteoarthritis Development
by
Christiansen, Blaine A
,
Mendez, Melanie E
,
Murugesh, Deepa K
in
60 APPLIED LIFE SCIENCES
,
Anterior cruciate ligament
,
Antibiotics
2023
Post traumatic osteoarthritis (PTOA) is a form of secondary osteoarthritis (OA) that develops in ~50% of cases of severe articular joint injuries and leads to chronic and progressive degradation of articular cartilage and other joint tissues. PTOA progression can be exacerbated by repeated injury and systemic inflammation. Few studies have examined approaches for blunting or slowing down PTOA progression with emphasis on systemic inflammation; most arthritis studies focused on the immune system have been in the context of rheumatoid arthritis. To examine how the gut microbiome affects systemic inflammation during PTOA development, we used a chronic antibiotic treatment regimen starting at weaning for 6 weeks before anterior cruciate ligament (ACL) rupture in STR/ort mice combined with lipopolysaccharide (LPS)‐induced systemic inflammation. STR/ort mice develop spontaneous OA as well as a more severe PTOA phenotype than C57Bl/6J mice. By 6 weeks post injury, histological examination showed a more robust cartilage staining in the antibiotic‐treated (AB) STR/ort mice than in the untreated STR/ort controls. Furthermore, we also examined the effects of AB treatment on systemic inflammation and found that the effects of LPS administration before injury are also blunted by AB treatment in STR/ort mice. The AB‐ or AB+LPS‐treated STR/ort injured joints more closely resembled the C57Bl/6J VEH OA phenotypes than the vehicle‐ or LPS‐treated STR/ort, suggesting that antibiotic treatment has the potential to slow disease progression and should be further explored therapeutically as prophylactic post injury. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Journal Article
Degradation‐Resistant Hypoxia Inducible Factor‐2α in Murine Osteocytes Promotes a High Bone Mass Phenotype
by
Mendoza, Sarah V.
,
Loots, Gabriela G.
,
Genetos, Damian C.
in
Adaptation
,
Angiogenesis
,
BASIC BIOLOGICAL SCIENCES
2023
Molecular oxygen levels vary during development and disease. Adaptations to decreased oxygen bioavailability (hypoxia) are mediated by hypoxia‐inducible factor (HIF) transcription factors. HIFs are composed of an oxygen‐dependent α subunit (HIF‐α), of which there are two transcriptionally active isoforms (HIF‐1α and HIF‐2α), and a constitutively expressed β subunit (HIFβ). Under normoxic conditions, HIF‐α is hydroxylated via prolyl hydroxylase domain (PHD) proteins and targeted for degradation via Von Hippel‐Lindau (VHL). Under hypoxic conditions, hydroxylation via PHD is inhibited, allowing for HIF‐α stabilization and induction of target transcriptional changes. Our previous studies showed that Vhl deletion in osteocytes (Dmp1‐cre; Vhlf/f) resulted in HIF‐α stabilization and generation of a high bone mass (HBM) phenotype. The skeletal impact of HIF‐1α accumulation has been well characterized; however, the unique skeletal impacts of HIF‐2α remain understudied. Because osteocytes orchestrate skeletal development and homeostasis, we investigated the role of osteocytic HIF‐α isoforms in driving HBM phenotypes via osteocyte‐specific loss‐of‐function and gain‐of‐function HIF‐1α and HIF‐2α mutations in C57BL/6 female mice. Deletion of Hif1a or Hif2a in osteocytes showed no effect on skeletal microarchitecture. Constitutively stable, degradation‐resistant HIF‐2α (HIF‐2α cDR), but not HIF‐1α cDR, generated dramatic increases in bone mass, enhanced osteoclast activity, and expansion of metaphyseal marrow stromal tissue at the expense of hematopoietic tissue. Our studies reveal a novel influence of osteocytic HIF‐2α in driving HBM phenotypes that can potentially be harnessed pharmacologically to improve bone mass and reduce fracture risk. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. Osteocyte (OCY)‐specific degradation‐resistant HIF‐2α (HIF‐2α cDR) mice generated a high bone mass skeletal phenotype with increased trabecular bone and decreased cortical bone. Distal femoral metaphysis of HIF‐2α cDR mice showed evidence of bone marrow stromal tissue expansion, increased trabecular bone and new bone formation compared to cre‐negative control. Arrows indicate newly embedding osteocytes in newly forming bone. Created with BioRender.com.
Journal Article
Preexisting Type 1 Diabetes Mellitus Blunts the Development of Posttraumatic Osteoarthritis
by
Christiansen, Blaine A
,
Sebastian, Aimy
,
Jbeily, Elias H
in
Animals
,
Arthritis
,
BASIC BIOLOGICAL SCIENCES
2022
Type 1 diabetes mellitus (T1DM) affects 9.5% of the population. T1DM is characterized by severe insulin deficiency that causes hyperglycemia and leads to several systemic effects. T1DM has been suggested as a risk factor for articular cartilage damage and loss, which could expedite the development of osteoarthritis (OA). OA represents a major public health challenge by affecting 300 million people globally, yet very little is known about the correlation between T1DM and OA. In addition, current studies that have looked at the interaction between diabetes mellitus and OA have reported conflicting results with some suggesting a positive correlation whereas others did not. In this study, we aimed to evaluate whether T1DM exacerbates the development of spontaneous OA or accelerates the progression of posttraumatic osteoarthritis (PTOA) after joint injury. Histological evaluation of T1DM and control joints determined that T1DM mice displayed cartilage degeneration measurements consistent with mild OA phenotypes. RNA sequencing analyses identified significantly upregulated genes in T1DM corresponding to matrix‐degrading enzymes known to promote cartilage matrix degradation, suggesting a role of these enzymes in OA development. Next, we assessed whether preexisting T1DM influences PTOA development subsequent to trauma. At 6 weeks post‐injury, T1DM injured joints displayed significantly less cartilage damage and joint degeneration than injured non‐diabetic joints, suggesting a significant delay in PTOA disease progression. At the single‐cell resolution, we identified increased number of cells expressing the chondrocyte markers Col2a1, Acan, and Cytl1 in the T1DM injured group. Our findings demonstrate that T1DM can be a risk factor for OA but not for PTOA. This study provides the first account of single‐cell resolution related to T1DM and the risk for OA and PTOA. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Journal Article