Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
28
result(s) for
"Musaev, Alexander"
Sort by:
A Multi-Expert Evolutionary Boosting Method for Proactive Control in Unstable Environments
by
Grigoriev, Dmitry
,
Musaev, Alexander
in
Adaptation
,
Approximation
,
chaotic time series forecasting
2025
Unstable technological processes, such as turbulent gas and hydrodynamic flows, generate time series that deviate sharply from the assumptions of classical statistical forecasting. These signals are shaped by stochastic chaos, characterized by weak inertia, abrupt trend reversals, and pronounced low-frequency contamination. Traditional extrapolators, including linear and polynomial models, therefore act only as weak forecasters, introducing systematic phase lag and rapidly losing directional reliability. To address these challenges, this study introduces an evolutionary boosting framework within a multi-expert system (MES) architecture. Each expert is defined by a compact genome encoding training-window length and polynomial order, and experts evolve across generations through variation, mutation, and selection. Unlike conventional boosting, which adapts only weights, evolutionary boosting adapts both the weights and the structure of the expert pool, allowing the system to escape local optima and remain responsive to rapid environmental shifts. Numerical experiments on real monitoring data demonstrate consistent error reduction, highlighting the advantage of short windows and moderate polynomial orders in balancing responsiveness with robustness. The results show that evolutionary boosting transforms weak extrapolators into a strong short-horizon forecaster, offering a lightweight and interpretable tool for proactive control in environments dominated by chaotic dynamics.
Journal Article
Ensemble Multi-Expert Forecasting: Robust Decision-Making in Chaotic Financial Markets
2025
Financial time series in volatile markets often exhibit non-stationary behavior and signatures of stochastic chaos, challenging traditional forecasting methods based on stationarity assumptions. In this paper, we introduce a novel multi-expert forecasting system (MES) that leverages ensemble machine learning techniques—including bagging, boosting, and stacking—to enhance prediction accuracy and support robust risk management decisions. The proposed framework integrates diverse “weak learner” models, ranging from linear extrapolation and multidimensional regression to sentiment-based text analytics, into a unified decision-making architecture. Each expert is designed to capture distinct aspects of the underlying market dynamics, while the supervisory module aggregates their outputs using adaptive weighting schemes that account for evolving error characteristics. Empirical evaluations using high-frequency currency data, notably for the EUR/USD pair, demonstrate that the ensemble approach significantly improves forecast reliability, as evidenced by higher winning probabilities and better net trading results compared to individual forecasting models. These findings contribute both to the theoretical understanding of ensemble forecasting under chaotic market conditions and to its practical application in financial risk management, offering a reproducible methodology for managing uncertainty in highly dynamic environments.
Journal Article
The Genesis of Uncertainty: Structural Analysis of Stochastic Chaos in Finance Markets
by
Grigoriev, Dmitry
,
Musaev, Alexander
,
Makshanov, Andrey
in
Algorithms
,
Artificial intelligence
,
Capital market
2023
The presented article is methodological in nature and is devoted to the analysis of observation series of financial asset quotation changes in capital markets. The most important feature of these processes is their instability, which manifests itself in high sensitivity to seemingly minor disturbing factors. This phenomenon is well-studied in the theory of nonlinear dynamical systems and is described by models of deterministic chaos. However, for the processes considered in the article, the dynamic instability of the immersion environment is exacerbated by stochastic uncertainty caused by random fluctuations in the pricing process. As a result, describing observation series of quotations of financial assets is difficult because it involves stochastic chaos. This article analyzes and classifies chaotic series of observations to help model and forecast related processes.
Journal Article
Numerical Studies of Statistical Management Decisions in Conditions of Stochastic Chaos
2022
The research presented in this article is dedicated to analyzing the acceptability of traditional techniques of statistical management decision-making in conditions of stochastic chaos. A corresponding example would be asset management at electronic capital markets. This formulation of the problem is typical for a large number of applications in which the managed object interacts with an unstable immersion environment. In particular, this issue arises in problems of managing gas-dynamic and hydrodynamic turbulent flows. We highlight the features of observation series of the managed object’s state immersed in an unstable interaction environment. The fundamental difference between observation series of chaotic processes and probabilistic descriptions of traditional models is demonstrated. We also present an additive observation model with a chaotic system component and non-stationary noise which provides the most adequate characterization of the original observation series. Furthermore, we suggest a method for numerically analyzing the efficiency of conventional statistical solutions in the conditions of stochastic chaos. Based on numerical experiments, we establish that techniques of optimal statistical synthesis do not allow for making effective management decisions in the conditions of stochastic chaos. Finally, we propose several versions of compositional algorithms focused on the adaptation of statistical techniques to the non-deterministic conditions caused by the specifics of chaotic processes.
Journal Article
Analyzing, Modeling, and Utilizing Observation Series Correlation in Capital Markets
2021
In this paper, we consider the task of the analysis, modeling, and application of dependencies between asset quotes at various capital markets. As an example, we study the dependency between financial instrument observation series in the currency and stock markets. Our work intends to give a theoretical basis to asset management strategies that estimate an asset’s price via regression, taking into account its correlated assets in various markets. Furthermore, we provide a way to increase the estimate quality using an evolutionary algorithm.
Journal Article
Evolutionary Optimization of Control Strategies for Non-Stationary Immersion Environments
by
Grigoriev, Dmitry
,
Musaev, Alexander
,
Makshanov, Andrey
in
Adaptive control
,
Asset management
,
channel strategies
2022
We consider the problem of evolutionary self-organization of control strategies using the example of speculative trading in a non-stationary immersion market environment. The main issue that obstructs obtaining real profit is the extremely high instability of the system component of observation series which implement stochastic chaos. In these conditions, traditional techniques for increasing the stability of control strategies are ineffective. In particular, the use of adaptive computational schemes is difficult due to the high volatility and non-stationarity of observation series. That leads to significant statistical errors of both kinds in the generated control decisions. An alternative approach based on the use of dynamic robustification technologies significantly reduces the effectiveness of the decisions. In the current work, we propose a method based on evolutionary modeling, which supplies structural and parametric self-organization of the control model.
Journal Article
Statistical Analysis of Current Financial Instrument Quotes in the Conditions of Market Chaos
by
Grigoriev, Dmitry
,
Musaev, Alexander
,
Makshanov, Andrey
in
Algorithms
,
asset management
,
Efficient markets
2022
In this paper, the problem of estimating the current value of financial instruments using multidimensional statistical analysis is considered. The research considers various approaches to constructing regression computational schemes using quotes of financial instruments correlated to the data as regressors. An essential feature of the problem is the chaotic nature of its observation series, which is due to the instability of the probabilistic structure of the initial data. These conditions invalidate the constraints under which traditional statistical estimates remain non-biased and effective. Violation of experiment repeatability requirements obstructs the use of the conventional data averaging approach. In this case, numeric experiments become the main method for investigating the efficiency of forecasting and analysis algorithms of observation series. The empirical approach does not provide guaranteed results. However, it can be used to build sufficiently effective rational strategies for managing trading operations.
Journal Article
Exploring the Quotation Inertia in International Currency Markets
by
Grigoriev, Dmitry
,
Musaev, Alexander
,
Makshanov, Andrey
in
electronic trading
,
Experiments
,
Foreign exchange market
2023
The authors suggest a methodology that involves conducting a preliminary analysis of inertia in financial time series. Inertia here means the manifestation of some kind of long-term memory. Such effects may take place in complex processes of a stochastic kind. If the decision is negative, they do not recommend using predictive management strategies based on trend analysis. The study uses computational schemes to detect and confirm trends in financial market data. The effectiveness of these schemes is evaluated by analyzing the frequency of trend confirmation over different time intervals and with different levels of trend confirmation. Furthermore, the study highlights the limitations of using smoothed curves for trend analysis due to the lag in the dynamics of the curve, emphasizing the importance of considering real-time data in trend analysis for more accurate predictions.
Journal Article
Numerical Studies of Channel Management Strategies for Nonstationary Immersion Environments: EURUSD Case Study
by
Grigoriev, Dmitry
,
Musaev, Alexander
,
Makshanov, Andrey
in
Asset management
,
Background noise
,
channel control strategies
2022
This article considers a short-term forecasting of a process that is an output signal of a nonlinear system observed on the background of additive noise. Forecasting is made possible thanks to the technique of nonparametric estimation of local trends. The main problem in this case is the instability of the time of the existence of these local trends. The average duration of relatively stable intervals can be estimated from earlier observation history. Such approaches are called channel strategies. The task of constructing such strategies for EURUSD asset management in the conditions of market chaos is considered, as well as the potential capabilities of these management strategies via computational experiments. We demonstrated the fundamental possibility of achieving profit even for areas with complex dynamics with abrupt changes in the considered process. We propose improved channel strategies and also denote the main directions of increasing their effectiveness.
Journal Article
Forecasting Multivariate Chaotic Processes with Precedent Analysis
by
Grigoriev, Dmitry
,
Musaev, Alexander
,
Makshanov, Andrey
in
Accuracy
,
Algorithms
,
Chaos theory
2021
Predicting the state of a dynamic system influenced by a chaotic immersion environment is an extremely difficult task, in which the direct use of statistical extrapolation computational schemes is infeasible. This paper considers a version of precedent forecasting in which we use the aftereffects of retrospective observation segments that are similar to the current situation as a forecast. Furthermore, we employ the presence of relatively stable correlations between the parameters of the immersion environment as a regularizing factor. We pay special attention to the choice of similarity measures or distances used to find analog windows in arrays of retrospective multidimensional observations.
Journal Article