Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Mutlu, Baris R."
Sort by:
Oscillatory inertial focusing in infinite microchannels
Inertial microfluidics (i.e., migration and focusing of particles in finite Reynolds number microchannel flows) is a passive, precise, and high-throughput method for microparticle manipulation and sorting. Therefore, it has been utilized in numerous biomedical applications including phenotypic cell screening, blood fractionation, and rare-cell isolation. Nonetheless, the applications of this technology have been limited to larger bioparticles such as blood cells, circulating tumor cells, and stem cells, because smaller particles require drastically longer channels for inertial focusing, which increases the pressure requirement and the footprint of the device to the extent that the system becomes unfeasible. Inertial manipulation of smaller bioparticles such as fungi, bacteria, viruses, and other pathogens or blood components such as platelets and exosomes is of significant interest. Here, we show that using oscillatory microfluidics, inertial focusing in practically “infinite channels” can be achieved, allowing for focusing of micron-scale (i.e. hundreds of nanometers) particles. This method enables manipulation of particles at extremely low particle Reynolds number (Rep < 0.005) flows that are otherwise unattainable by steady-flow inertial microfluidics (which has been limited to Rep > ∼10−1). Using this technique, we demonstrated that synthetic particles as small as 500 nm and a submicron bacterium, Staphylococcus aureus, can be inertially focused. Furthermore, we characterized the physics of inertial microfluidics in this newly enabled particle size and Rep range using a Peclet-like dimensionless number (α). We experimentally observed that α >> 1 is required to overcome diffusion and be able to inertially manipulate particles.
Dynamic particle ordering in oscillatory inertial microfluidics
Particles suspended in conduit flows at small and intermediate Reynolds numbers cluster on specific focal positions while also forming particle pairs and trains due to flow-mediated interactions. The recent introduction of oscillatory inertial microfluidics has enabled the creation of virtually infinite channels, allowing the manipulation of particles at extremely low particle Reynolds numbers (Rep ≪ 1). Here, we investigate experimentally the dynamics of formation, the robustness and the stability of particle pairs, and the precision of the inter-particle distance in an oscillatory flow field, in microchannels with a rectangular cross section. Our results indicate that the cross-sectional arrangement of the particles is fundamental in determining the characteristics of the resulting particle pair.
A microfluidic transistor for automatic control of liquids
Microfluidics have enabled notable advances in molecular biology 1 , 2 , synthetic chemistry 3 , 4 , diagnostics 5 , 6 and tissue engineering 7 . However, there has long been a critical need in the field to manipulate fluids and suspended matter with the precision, modularity and scalability of electronic circuits 8 – 10 . Just as the electronic transistor enabled unprecedented advances in the automatic control of electricity on an electronic chip, a microfluidic analogue to the transistor could enable improvements in the automatic control of reagents, droplets and single cells on a microfluidic chip. Previous works on creating a microfluidic analogue to the electronic transistor 11 – 13 did not replicate the transistor’s saturation behaviour, and could not achieve proportional amplification 14 , which is fundamental to modern circuit design 15 . Here we exploit the fluidic phenomenon of flow limitation 16 to develop a microfluidic element capable of proportional amplification with flow–pressure characteristics completely analogous to the current–voltage characteristics of the electronic transistor. We then use this microfluidic transistor to directly translate fundamental electronic circuits into the fluidic domain, including the amplifier, regulator, level shifter, logic gate and latch. We also combine these building blocks to create more complex fluidic controllers, such as timers and clocks. Finally, we demonstrate a particle dispenser circuit that senses single suspended particles, performs signal processing and accordingly controls the movement of each particle in a deterministic fashion without electronics. By leveraging the vast repertoire of electronic circuit design, microfluidic-transistor-based circuits enable fluidic automatic controllers to manipulate liquids and single suspended particles for lab-on-a-chip platforms. Flow limitation is exploited to develop a microfluidic device exhibiting flow–pressure behaviour analogous to the current–voltage characteristics of an electronic transistor.
Ultrahigh-throughput magnetic sorting of large blood volumes for epitope-agnostic isolation of circulating tumor cells
Circulating tumor cell (CTC)-based liquid biopsies provide unique opportunities for cancer diagnostics, treatment selection, and response monitoring, but even with advanced microfluidic technologies for rare cell detection the very low number of CTCs in standard 10-mL peripheral blood samples limits their clinical utility. Clinical leukapheresis can concentrate mononuclear cells from almost the entire blood volume, but such large numbers and concentrations of cells are incompatible with current rare cell enrichment technologies. Here, we describe an ultrahigh-throughput microfluidic chip, LPCTC-iChip, that rapidly sorts through an entire leukapheresis product of over 6 billion nucleated cells, increasing CTC isolation capacity by two orders of magnitude (86% recovery with 105 enrichment). Using soft iron-filled channels to act as magnetic microlenses, we intensify the field gradient within sorting channels. Increasing magnetic fields applied to inertially focused streams of cells effectively deplete massive numbers of magnetically labeled leukocytes within microfluidic channels. The negative depletion of antibody-tagged leukocytes enables isolation of potentially viable CTCs without bias for expression of specific tumor epitopes, making this platform applicable to all solid tumors. Thus, the initial enrichment by routine leukapheresis of mononuclear cells from very large blood volumes, followed by rapid flow, high-gradient magnetic sorting of untagged CTCs, provides a technology for noninvasive isolation of cancer cells in sufficient numbers for multiple clinical and experimental applications.
Non-equilibrium Inertial Separation Array for High-throughput, Large-volume Blood Fractionation
Microfluidic blood processing is used in a range of applications from cancer therapeutics to infectious disease diagnostics. As these applications are being translated to clinical use, processing larger volumes of blood in shorter timescales with high-reliability and robustness is becoming a pressing need. In this work, we report a scaled, label-free cell separation mechanism called non-equilibrium inertial separation array (NISA). The NISA mechanism consists of an array of islands that exert a passive inertial lift force on proximate cells, thus enabling gentler manipulation of the cells without the need of physical contact. As the cells follow their size-based, deterministic path to their equilibrium positions, a preset fraction of the flow is siphoned to separate the smaller cells from the main flow. The NISA device was used to fractionate 400 mL of whole blood in less than 3 hours, and produce an ultrapure buffy coat (96.6% white blood cell yield, 0.0059% red blood cell carryover) by processing whole blood at 3 mL/min, or ∼300 million cells/second. This device presents a feasible alternative for fractionating blood for transfusion, cellular therapy and blood-based diagnostics, and could significantly improve the sensitivity of rare cell isolation devices by increasing the processed whole blood volume.
Long-term preservation of silica gel-encapsulated bacterial biocatalysts by desiccation
Whole cells encapsulated in silica gels are used in a wide variety of applications in biomedicine, biotechnology and bioremediation. Drying after encapsulation is desirable to enhance the strength of the gel and to make it lighter, facilitating its use, storage and transportation. However, preserving biological activity of the cells in a desiccated state remains a formidable challenge. In this study, different drying conditions for a silica gel-encapsulated bacterial biocatalyst (atrazine biodegrading Escherichia coli ) were studied to enhance mechanical properties while sustaining long-term biocatalytic activity of the bacteria. Effects of lyoprotectant solutions containing 0.4 M sucrose, 0.4 M trehalose or 30 % (wt/wt) glycerol on the activity of the encapsulated bacteria during drying were investigated. It was determined that two orders of magnitude increase in the elastic modulus ( E ) and the compressive stress at failure ( σ ) of the gel could be achieved by drying, independent of the drying rate. It was shown that partially desiccated silica gels preserved and enhanced the biocatalytic activity of the encapsulated bacteria up to a critical drying level. Atrazine biodegradation activity of encapsulated bacteria suspended with 0.4 M sucrose and PBS increased with increasing water removal, reaching a maximum at 68 % water loss. This enhanced activity was sustained for 3 months, when the gels were stored at 4 °C. Graphical Abstract
Silica ecosystem for synergistic biotransformation
Synergistical bacterial species can perform more varied and complex transformations of chemical substances than either species alone, but this is rarely used commercially because of technical difficulties in maintaining mixed cultures. Typical problems with mixed cultures on scale are unrestrained growth of one bacterium, which leads to suboptimal population ratios and lack of control over bacterial spatial distribution, which leads to inefficient substrate transport. To address these issues, we designed and produced a synthetic ecosystem by co-encapsulation in a silica gel matrix, which enabled precise control of the microbial populations and their microenvironment. As a case study, two greatly different microorganisms: Pseudomonas sp. NCIB 9816 and Synechococcus elongatus PCC 7942 were encapsulated. NCIB 9816 can aerobically biotransform over 100 aromatic hydrocarbons, a feat useful for synthesis of higher value commodity chemicals or environmental remediation. In our system, NCIB 9816 was used for biotransformation of naphthalene (a model substrate) into CO 2 and the cyanobacterium PCC 7942 was used to provide the necessary oxygen for the biotransformation reactions via photosynthesis. A mathematical model was constructed to determine the critical cell density parameter to maximize oxygen production and was then used to maximize the biotransformation rate of the system.
A Microfluidic Transistor for Liquid Signal Processing
Microfluidics have enabled significant advances in molecular biology 1-3 , synthetic chemistry 4,5 , diagnostics 6,7 , and tissue engineering 8 . However, there has long been a critical need in the field to manipulate fluids and suspended matter with the precision, modularity, and scalability of electronic circuits 9-11 . Just as the electronic transistor enabled unprecedented advances in the control of electricity on an electronic chip, a microfluidic analogue to the transistor could enable improvements in the complex, scalable control of reagents, droplets, and single cells on an autonomous microfluidic chip. Prior works on creating a microfluidic analogue to the electronic transistor 12-14 could not replicate the transistor's saturation behavior, which is crucial to perform analog amplification 15 and is fundamental to modern circuit design 16 . Here we exploit the fluidic phenomenon of flow-limitation 17 to develop a microfluidic element with flow-pressure characteristics completely analogous to the current-voltage characteristics of the electronic transistor. As this microfluidic transistor successfully replicates all of the key operating regimes of the electronic transistor (linear, cut-off and saturation), we are able to directly translate a variety of fundamental electronic circuit designs into the fluidic domain, including the amplifier, regulator, level shifter, logic gate, and latch. Finally, we demonstrate a \"smart\" particle dispenser that senses single suspended particles, performs liquid signal processing, and accordingly controls the movement of said particles in a purely fluidic system without electronics. By leveraging the vast repertoire of electronic circuit design, microfluidic transistor-based circuits are easy to integrate at scale, eliminate the need for external flow control, and enable uniquely complex liquid signal processing and single-particle manipulation for the next generation of chemical, biological, and clinical platforms.Microfluidics have enabled significant advances in molecular biology 1-3 , synthetic chemistry 4,5 , diagnostics 6,7 , and tissue engineering 8 . However, there has long been a critical need in the field to manipulate fluids and suspended matter with the precision, modularity, and scalability of electronic circuits 9-11 . Just as the electronic transistor enabled unprecedented advances in the control of electricity on an electronic chip, a microfluidic analogue to the transistor could enable improvements in the complex, scalable control of reagents, droplets, and single cells on an autonomous microfluidic chip. Prior works on creating a microfluidic analogue to the electronic transistor 12-14 could not replicate the transistor's saturation behavior, which is crucial to perform analog amplification 15 and is fundamental to modern circuit design 16 . Here we exploit the fluidic phenomenon of flow-limitation 17 to develop a microfluidic element with flow-pressure characteristics completely analogous to the current-voltage characteristics of the electronic transistor. As this microfluidic transistor successfully replicates all of the key operating regimes of the electronic transistor (linear, cut-off and saturation), we are able to directly translate a variety of fundamental electronic circuit designs into the fluidic domain, including the amplifier, regulator, level shifter, logic gate, and latch. Finally, we demonstrate a \"smart\" particle dispenser that senses single suspended particles, performs liquid signal processing, and accordingly controls the movement of said particles in a purely fluidic system without electronics. By leveraging the vast repertoire of electronic circuit design, microfluidic transistor-based circuits are easy to integrate at scale, eliminate the need for external flow control, and enable uniquely complex liquid signal processing and single-particle manipulation for the next generation of chemical, biological, and clinical platforms.
Lowering Uric Acid With Allopurinol Improves Insulin Resistance and Systemic Inflammation in Asymptomatic Hyperuricemia
BackgroundHyperuricemia is an independent predictor of impaired fasting glucose and type 2 diabetes, but whether it has a causal role in insulin resistance remains controversial. Here we tested the hypothesis that lowering uric acid in hyperuricemic nondiabetic subjects might improve insulin resistance.MethodsSubjects with asymptomatic hyperuricemia (n = 73) were prospectively placed on allopurinol (n = 40) or control (n = 33) for 3 months. An additional control group consisted of 48 normouricemic subjects. Serum uric acid, fasting glucose, fasting insulin, HOMA-IR (homeostatic model assessment of insulin resistance), and high-sensitivity C-reactive protein were measured at baseline and at 3 months.ResultsAllopurinol-treated subjects showed a reduction in serum uric acid in association with improvement in fasting blood glucose, fasting insulin, and HOMA-IR index, as well as a reduction in serum high-sensitivity C-reactive protein. The number of subjects with impaired fasting glucose significantly decreased in the allopurinol group at 3 months compared with baseline (n = 8 [20%] vs n = 30 [75%], 3 months vs baseline, P < 0.001). In the hyperuricemic control group, only glucose decreased significantly and, in the normouricemic control, no end point changed.ConclusionsAllopurinol lowers uric acid and improves insulin resistance and systemic inflammation in asymptomatic hyperuricemia. Larger clinical trials are recommended to determine if lowering uric acid can help prevent type 2 diabetes.