Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
45 result(s) for "Myer, Vic E"
Sort by:
COT drives resistance to RAF inhibition through MAP kinase pathway reactivation
Drug-resistance mechanism in melanoma Clinical trials in melanoma patients carrying B-RAF gene mutations have shown promising results with the B-RAF kinase inhibitor PLX4032, but many patients go on to become resistant. Two papers now uncover possible mechanisms for this resistance. Nazarian et al . report that melanomas can acquire resistance due to mutations of N-RAS or increased expression of PDGFRβ , and Johannessen et al . report resistance due to upregulation of MAP3K8/COT. Each of these mechanisms seems to apply to some patients in the recent PLX4032 trial, yet surprisingly, no secondary B-RAF mutations were observed. Recent data from early clinical trials in melanoma patients carrying mutations in the B-RAF gene have shown promising results with the B-RAF kinase inhibitor PLX4032; however, many patients eventually develop resistance to this treatment. Two papers now uncover possible mechanisms of resistance to PLX4032. One paper shows that upregulation of MAP3K8 (which encodes COT) can confer resistance of melanoma cells to B-RAF inhibitors, whereas another paper found that melanomas can acquire resistance due to mutations of N-RAS or increased expression of PDGFRβ. Each of these resistance mechanisms seems to apply to at least some patients on recent PLX4032 trial, whereas, surprisingly, so far no secondary B-RAF mutations have been observed. Oncogenic mutations in the serine/threonine kinase B-RAF (also known as BRAF) are found in 50–70% of malignant melanomas 1 . Pre-clinical studies have demonstrated that the B-RAF(V600E) mutation predicts a dependency on the mitogen-activated protein kinase (MAPK) signalling cascade in melanoma 2 , 3 , 4 , 5 , 6 —an observation that has been validated by the success of RAF and MEK inhibitors in clinical trials 7 , 8 , 9 . However, clinical responses to targeted anticancer therapeutics are frequently confounded by de novo or acquired resistance 10 , 11 , 12 . Identification of resistance mechanisms in a manner that elucidates alternative ‘druggable’ targets may inform effective long-term treatment strategies 13 . Here we expressed ∼600 kinase and kinase-related open reading frames (ORFs) in parallel to interrogate resistance to a selective RAF kinase inhibitor. We identified MAP3K8 (the gene encoding COT/Tpl2) as a MAPK pathway agonist that drives resistance to RAF inhibition in B-RAF(V600E) cell lines. COT activates ERK primarily through MEK-dependent mechanisms that do not require RAF signalling. Moreover, COT expression is associated with de novo resistance in B-RAF(V600E) cultured cell lines and acquired resistance in melanoma cells and tissue obtained from relapsing patients following treatment with MEK or RAF inhibitors. We further identify combinatorial MAPK pathway inhibition or targeting of COT kinase activity as possible therapeutic strategies for reducing MAPK pathway activation in this setting. Together, these results provide new insights into resistance mechanisms involving the MAPK pathway and articulate an integrative approach through which high-throughput functional screens may inform the development of novel therapeutic strategies.
Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus
The CRISPR–Cas9 system provides a versatile toolkit for genome engineering that can introduce various DNA lesions at specific genomic locations. However, a better understanding of the nature of these lesions and the repair pathways engaged is critical to realizing the full potential of this technology. Here we characterize the different lesions arising from each Cas9 variant and the resulting repair pathway engagement. We demonstrate that the presence and polarity of the overhang structure is a critical determinant of double-strand break repair pathway choice. Similarly, single nicks deriving from different Cas9 variants differentially activate repair: D10A but not N863A-induced nicks are repaired by homologous recombination. Finally, we demonstrate that homologous recombination is required for repairing lesions using double-stranded, but not single-stranded DNA as a template. This detailed characterization of repair pathway choice in response to CRISPR–Cas9 enables a more deterministic approach for designing research and therapeutic genome engineering strategies. CRISPR-Cas9 has rapidly become a common molecular biology tool for modifying genomes and has been modified to generate single-strand nicks as well as double-strand breaks. Here the authors explore the DNA repair pathways activated by the different variants of Cas9.
Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo
Cells rely on autophagy to clear misfolded proteins and damaged organelles to maintain cellular homeostasis. In this study we use the new autophagy inhibitor PIK-III to screen for autophagy substrates. PIK-III is a selective inhibitor of VPS34 that binds a unique hydrophobic pocket not present in related kinases such as PI(3)Kα. PIK-III acutely inhibits autophagy and de novo lipidation of LC3, and leads to the stabilization of autophagy substrates. By performing ubiquitin-affinity proteomics on PIK-III-treated cells we identified substrates including NCOA4, which accumulates in ATG7 -deficient cells and co-localizes with autolysosomes. NCOA4 directly binds ferritin heavy chain-1 (FTH1) to target the iron-binding ferritin complex with a relative molecular mass of 450,000 to autolysosomes following starvation or iron depletion. Interestingly, Ncoa4 −/− mice exhibit a profound accumulation of iron in splenic macrophages, which are critical for the reutilization of iron from engulfed red blood cells. Taken together, the results of this study provide a new mechanism for selective autophagy of ferritin and reveal a previously unappreciated role for autophagy and NCOA4 in the control of iron homeostasis in vivo . Murphy and colleagues generate an inhibitor of the lipid kinase VPS34, which they use to uncover autophagy substrates. One of their targets, NCOA4, regulates iron homeostasis by binding ferritin heavy chain-1 and targeting ferritin to autolysosomes.
AsCas12a ultra nuclease facilitates the rapid generation of therapeutic cell medicines
Though AsCas12a fills a crucial gap in the current genome editing toolbox, it exhibits relatively poor editing efficiency, restricting its overall utility. Here we isolate an engineered variant, “AsCas12a Ultra”, that increased editing efficiency to nearly 100% at all sites examined in HSPCs, iPSCs, T cells, and NK cells. We show that AsCas12a Ultra maintains high on-target specificity thereby mitigating the risk for off-target editing and making it ideal for complex therapeutic genome editing applications. We achieved simultaneous targeting of three clinically relevant genes in T cells at >90% efficiency and demonstrated transgene knock-in efficiencies of up to 60%. We demonstrate site-specific knock-in of a CAR in NK cells, which afforded enhanced anti-tumor NK cell recognition, potentially enabling the next generation of allogeneic cell-based therapies in oncology. AsCas12a Ultra is an advanced CRISPR nuclease with significant advantages in basic research and in the production of gene edited cell medicines. The utility of AsCas12a can be limited to poor editing efficiency. Here the authors identify a variant, “AsCas12a Ultra”, that has high on-target specificity demonstrated through editing of clinically relevant T cell genes.
Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers
Defects in epigenetic regulation play a fundamental role in the development of cancer, and epigenetic regulators have recently emerged as promising therapeutic candidates. We therefore set out to systematically interrogate epigenetic cancer dependencies by screening an epigenome-focused deep-coverage design shRNA (DECODER) library across 58 cancer cell lines. This screen identified BRM/SMARCA2, a DNA-dependent ATPase of the mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complex, as being essential for the growth of tumor cells that harbor loss of function mutations in BRG1/SMARCA4. Depletion of BRM in BRG1-deficient cancer cells leads to a cell cycle arrest, induction of senescence, and increased levels of global H3K9me3. We further demonstrate the selective dependency of BRG1 -mutant tumors on BRM in vivo. Genetic alterations of the mSWI/SNF chromatin remodeling complexes are the most frequent among chromatin regulators in cancers, with BRG1/SMARCA4 mutations occurring in ∼10–15% of lung adenocarcinomas. Our findings position BRM as an attractive therapeutic target for BRG1 mutated cancers. Because BRG1 and BRM function as mutually exclusive catalytic subunits of the mSWI/SNF complex, we propose that such synthetic lethality may be explained by paralog insufficiency, in which loss of one family member unveils critical dependence on paralogous subunits. This concept of “cancer-selective paralog dependency” may provide a more general strategy for targeting other tumor suppressor lesions/complexes with paralogous subunits.
SMOOT libraries and phage-induced directed evolution of Cas9 to engineer reduced off-target activity
RNA-guided endonucleases such as Cas9 provide efficient on-target genome editing in cells but may also cleave at off-target loci throughout the genome. Engineered variants of Streptococcus pyogenes Cas9 (SpCas9) have been developed to globally reduce off-target activity, but individual off-targets may remain, or on-target activity may be compromised. In order to evolve against activity at specific off-targets while maintaining strong on-target editing, we developed a novel M13 bacteriophage-mediated selection method. Using this method, sequential rounds of positive and negative selection are used to identify mutations to Cas9 that enhance or diminish editing activity at particular genomic sequences. We also introduce scanning mutagenesis of oligo-directed targets (SMOOT), a comprehensive mutagenesis method to create highly diverse libraries of Cas9 variants that can be challenged with phage-based selection. Our platform identifies novel SpCas9 mutants which mitigate cleavage against off-targets both in biochemical assays and in T-cells while maintaining higher on-target activity than previously described variants. We describe an evolved variant, S. pyogenes Adapted to Reduce Target Ambiguity Cas9 (SpartaCas), composed of the most enriched mutations, each of unknown function. This evolved Cas9 mutant reduces off-target cleavage while preserving efficient editing at multiple therapeutically relevant targets. Directed evolution of Cas9 using our system demonstrates an improved structure-independent methodology to effectively engineer nuclease activity.
R-Spondin Potentiates Wnt/β-Catenin Signaling through Orphan Receptors LGR4 and LGR5
The Wnt/β-catenin signaling pathbway controls many important biological processes. R-Spondin (RSPO) proteins are a family of secreted molecules that strongly potentiate Wnt/β-catenin signaling, however, the molecular mechanism of RSPO action is not yet fully understood. We performed an unbiased siRNA screen to identify molecules specifically required for RSPO, but not Wnt, induced β-catenin signaling. From this screen, we identified LGR4, then an orphan G protein-coupled receptor (GPCR), as the cognate receptor of RSPO. Depletion of LGR4 completely abolished RSPO-induced β-catenin signaling. The loss of LGR4 could be compensated by overexpression of LGR5, suggesting that LGR4 and LGR5 are functional homologs. We further demonstrated that RSPO binds to the extracellular domain of LGR4 and LGR5, and that overexpression of LGR4 strongly sensitizes cells to RSPO-activated β-catenin signaling. Supporting the physiological significance of RSPO-LGR4 interaction, Lgr4-/- crypt cultures failed to grow in RSPO-containing intestinal crypt culture medium. No coupling between LGR4 and heterotrimeric G proteins could be detected in RSPO-treated cells, suggesting that LGR4 mediates RSPO signaling through a novel mechanism. Identification of LGR4 and its relative LGR5, an adult stem cell marker, as the receptors of RSPO will facilitate the further characterization of these receptor/ligand pairs in regenerative medicine applications.
Pairwise library screen systematically interrogates Staphylococcus aureus Cas9 specificity in human cells
Therapeutic genome editing with Staphylococcus aureus Cas9 (SaCas9) requires a rigorous understanding of its potential off-target activity in the human genome. Here we report a high-throughput screening approach to measure SaCas9 genome editing variation in human cells across a large repertoire of 88,692 single guide RNAs (sgRNAs) paired with matched or mismatched target sites in a synthetic cassette. We incorporate randomized barcodes that enable whitelisting of correctly synthesized molecules for further downstream analysis, in order to circumvent the limitation of oligonucleotide synthesis errors. We find SaCas9 sgRNAs with 21-mer or 22-mer spacer sequences are generally more active, although high efficiency 20-mer spacers are markedly less tolerant of mismatches. Using this dataset, we developed an SaCas9 specificity model that performs robustly in ranking off-target sites. The barcoded pairwise library screen enabled high-fidelity recovery of guide-target relationships, providing a scalable framework for the investigation of CRISPR enzyme properties and general nucleic acid interactions. A rigorous understanding of off-target effects is necessary for SaCas9 to be used in therapeutic genome editing. Here the authors measure SaCas9 mismatch tolerance across a pairwise library screen of 88,000 guides and targets in human cells and develop a model which ranks off-target sites.
UDiTaS™, a genome editing detection method for indels and genome rearrangements
Background Understanding the diversity of repair outcomes after introducing a genomic cut is essential for realizing the therapeutic potential of genomic editing technologies. Targeted PCR amplification combined with Next Generation Sequencing (NGS) or enzymatic digestion, while broadly used in the genome editing field, has critical limitations for detecting and quantifying structural variants such as large deletions (greater than approximately 100 base pairs), inversions, and translocations. Results To overcome these limitations, we have developed a Uni-Directional Targeted Sequencing methodology, UDiTaS, that is quantitative, removes biases associated with variable-length PCR amplification, and can measure structural changes in addition to small insertion and deletion events (indels), all in a single reaction. We have applied UDiTaS to a variety of samples, including those treated with a clinically relevant pair of S. aureus Cas9 single guide RNAs (sgRNAs) targeting CEP290 , and a pair of S. pyogenes Cas9 sgRNAs at T-cell relevant loci. In both cases, we have simultaneously measured small and large edits, including inversions and translocations, exemplifying UDiTaS as a valuable tool for the analysis of genome editing outcomes. Conclusions UDiTaS is a robust and streamlined sequencing method useful for measuring small indels as well as structural rearrangements, like translocations, in a single reaction. UDiTaS is especially useful for pre-clinical and clinical application of gene editing to measure on- and off-target editing, large and small.