Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
241
result(s) for
"Myers, Eugene"
Sort by:
MitoHiFi: a python pipeline for mitochondrial genome assembly from PacBio high fidelity reads
by
Krasheninnikova, Ksenia
,
McCarthy, Shane A.
,
Torrance, James
in
Accuracy
,
Algorithms
,
Annotations
2023
Background
PacBio high fidelity (HiFi) sequencing reads are both long (15–20 kb) and highly accurate (> Q20). Because of these properties, they have revolutionised genome assembly leading to more accurate and contiguous genomes. In eukaryotes the mitochondrial genome is sequenced alongside the nuclear genome often at very high coverage. A dedicated tool for mitochondrial genome assembly using HiFi reads is still missing.
Results
MitoHiFi was developed within the Darwin Tree of Life Project to assemble mitochondrial genomes from the HiFi reads generated for target species. The input for MitoHiFi is either the raw reads or the assembled contigs, and the tool outputs a mitochondrial genome sequence fasta file along with annotation of protein and RNA genes. Variants arising from heteroplasmy are assembled independently, and nuclear insertions of mitochondrial sequences are identified and not used in organellar genome assembly. MitoHiFi has been used to assemble 374 mitochondrial genomes (368 Metazoa and 6 Fungi species) for the Darwin Tree of Life Project, the Vertebrate Genomes Project and the Aquatic Symbiosis Genome Project. Inspection of 60 mitochondrial genomes assembled with MitoHiFi for species that already have reference sequences in public databases showed the widespread presence of previously unreported repeats.
Conclusions
MitoHiFi is able to assemble mitochondrial genomes from a wide phylogenetic range of taxa from Pacbio HiFi data. MitoHiFi is written in python and is freely available on GitHub (
https://github.com/marcelauliano/MitoHiFi
). MitoHiFi is available with its dependencies as a Docker container on GitHub (ghcr.io/marcelauliano/mitohifi:master).
Journal Article
Content-aware image restoration: pushing the limits of fluorescence microscopy
by
Boothe, Tobias
,
Henriques, Ricardo
,
Dibrov, Alexandr
in
Chemical compounds
,
Fluorescence
,
Fluorescence microscopy
2018
Fluorescence microscopy is a key driver of discoveries in the life sciences, with observable phenomena being limited by the optics of the microscope, the chemistry of the fluorophores, and the maximum photon exposure tolerated by the sample. These limits necessitate trade-offs between imaging speed, spatial resolution, light exposure, and imaging depth. In this work we show how content-aware image restoration based on deep learning extends the range of biological phenomena observable by microscopy. We demonstrate on eight concrete examples how microscopy images can be restored even if 60-fold fewer photons are used during acquisition, how near isotropic resolution can be achieved with up to tenfold under-sampling along the axial direction, and how tubular and granular structures smaller than the diffraction limit can be resolved at 20-times-higher frame rates compared to state-of-the-art methods. All developed image restoration methods are freely available as open source software in Python, FIJI, and KNIME.
Journal Article
Feral youth
by
Hutchinson, Shaun David, editor, author
,
Young, Suzanne, author
,
Nijkamp, Marieke, author
in
Survival Juvenile fiction.
,
Wilderness areas Juvenile fiction.
,
Survival Fiction.
2017
Follows ten teens who are left alone in the wilderness amid a three-day survival test.
Contrasting signatures of genomic divergence during sympatric speciation
2020
The transition from ‘well-marked varieties’ of a single species into ‘well-defined species’—especially in the absence of geographic barriers to gene flow (sympatric speciation)—has puzzled evolutionary biologists ever since Darwin
1
,
2
. Gene flow counteracts the buildup of genome-wide differentiation, which is a hallmark of speciation and increases the likelihood of the evolution of irreversible reproductive barriers (incompatibilities) that complete the speciation process
3
. Theory predicts that the genetic architecture of divergently selected traits can influence whether sympatric speciation occurs
4
, but empirical tests of this theory are scant because comprehensive data are difficult to collect and synthesize across species, owing to their unique biologies and evolutionary histories
5
. Here, within a young species complex of neotropical cichlid fishes (
Amphilophus
spp.), we analysed genomic divergence among populations and species. By generating a new genome assembly and re-sequencing 453 genomes, we uncovered the genetic architecture of traits that have been suggested to be important for divergence. Species that differ in monogenic or oligogenic traits that affect ecological performance and/or mate choice show remarkably localized genomic differentiation. By contrast, differentiation among species that have diverged in polygenic traits is genomically widespread and much higher overall, consistent with the evolution of effective and stable genome-wide barriers to gene flow. Thus, we conclude that simple trait architectures are not always as conducive to speciation with gene flow as previously suggested, whereas polygenic architectures can promote rapid and stable speciation in sympatry.
Population genomic analyses of Midas cichlid fishes in young Nicaraguan crater lakes suggest that sympatric speciation is promoted by polygenic architectures.
Journal Article
Six reference-quality genomes reveal evolution of bat adaptations
2020
Bats possess extraordinary adaptations, including flight, echolocation, extreme longevity and unique immunity. High-quality genomes are crucial for understanding the molecular basis and evolution of these traits. Here we incorporated long-read sequencing and state-of-the-art scaffolding protocols
1
to generate, to our knowledge, the first reference-quality genomes of six bat species (
Rhinolophus ferrumequinum
,
Rousettus aegyptiacus
,
Phyllostomus discolor
,
Myotis myotis
,
Pipistrellus kuhlii
and
Molossus molossus
). We integrated gene projections from our ‘Tool to infer Orthologs from Genome Alignments’ (TOGA) software with de novo and homology gene predictions as well as short- and long-read transcriptomics to generate highly complete gene annotations. To resolve the phylogenetic position of bats within Laurasiatheria, we applied several phylogenetic methods to comprehensive sets of orthologous protein-coding and noncoding regions of the genome, and identified a basal origin for bats within Scrotifera. Our genome-wide screens revealed positive selection on hearing-related genes in the ancestral branch of bats, which is indicative of laryngeal echolocation being an ancestral trait in this clade. We found selection and loss of immunity-related genes (including pro-inflammatory NF-κB regulators) and expansions of anti-viral APOBEC3 genes, which highlights molecular mechanisms that may contribute to the exceptional immunity of bats. Genomic integrations of diverse viruses provide a genomic record of historical tolerance to viral infection in bats. Finally, we found and experimentally validated bat-specific variation in microRNAs, which may regulate bat-specific gene-expression programs. Our reference-quality bat genomes provide the resources required to uncover and validate the genomic basis of adaptations of bats, and stimulate new avenues of research that are directly relevant to human health and disease
1
.
Reference-quality genomes for six bat species shed light on the phylogenetic position of Chiroptera, and provide insight into the genetic underpinnings of the unique adaptations of this clade.
Journal Article
Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms
by
Myers, Eugene W
,
Lemon, William C
,
Keller, Philipp J
in
14/63
,
631/136/2086
,
631/1647/245/2225
2016
Adaptive light-sheet microscopy improves imaging of live organisms by correcting for optical aberrations in real time.
Optimal image quality in light-sheet microscopy requires a perfect overlap between the illuminating light sheet and the focal plane of the detection objective. However, mismatches between the light-sheet and detection planes are common owing to the spatiotemporally varying optical properties of living specimens. Here we present the AutoPilot framework, an automated method for spatiotemporally adaptive imaging that integrates (i) a multi-view light-sheet microscope capable of digitally translating and rotating light-sheet and detection planes in three dimensions and (ii) a computational method that continuously optimizes spatial resolution across the specimen volume in real time. We demonstrate long-term adaptive imaging of entire developing zebrafish (
Danio rerio
) and
Drosophila melanogaster
embryos and perform adaptive whole-brain functional imaging in larval zebrafish. Our method improves spatial resolution and signal strength two to five-fold, recovers cellular and sub-cellular structures in many regions that are not resolved by non-adaptive imaging, adapts to spatiotemporal dynamics of genetically encoded fluorescent markers and robustly optimizes imaging performance during large-scale morphogenetic changes in living organisms.
Journal Article
The axolotl genome and the evolution of key tissue formation regulators
2018
Salamanders serve as important tetrapod models for developmental, regeneration and evolutionary studies. An extensive molecular toolkit makes the Mexican axolotl (
Ambystoma mexicanum
) a key representative salamander for molecular investigations. Here we report the sequencing and assembly of the 32-gigabase-pair axolotl genome using an approach that combined long-read sequencing, optical mapping and development of a new genome assembler (MARVEL). We observed a size expansion of introns and intergenic regions, largely attributable to multiplication of long terminal repeat retroelements. We provide evidence that intron size in developmental genes is under constraint and that species-restricted genes may contribute to limb regeneration. The axolotl genome assembly does not contain the essential developmental gene
Pax3
. However, mutation of the axolotl
Pax3
paralogue
Pax7
resulted in an axolotl phenotype that was similar to those seen in
Pax3
−/−
and
Pax7
−/−
mutant mice. The axolotl genome provides a rich biological resource for developmental and evolutionary studies.
Sequencing and assembly of the 32-Gb genome of the Mexican axolotl reveals that it lacks the developmental gene
Pax3
, which is essential in other vertebrates; the genome sequence could improve our understanding of the evolution of the axolotl’s remarkable regenerative capabilities.
Axolotl genome sequence
Elly Tanaka, Eugene Myers and colleagues report the genome sequence of the axolotl, a model organism for developmental, regeneration and evolutionary studies. To sequence and assemble this large and complex genome, the authors used a combination of long- and short-read sequencing, optical mapping and a new genome assembly pipeline, MARVEL, optimized for long-read sequencing of complex genomes. The genome assembly shows an expansion of long terminal repeat retroelements and the presence of a large HoxA cluster, but also a reduction in the number of Pax-family genes in the genome of this popular salamander.
Journal Article