Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
70
result(s) for
"Myles, Kevin M."
Sort by:
Production of Virus-Derived Ping-Pong-Dependent piRNA-like Small RNAs in the Mosquito Soma
by
Morazzani, Elaine M.
,
Adelman, Zach N.
,
Murreddu, Marta G.
in
Alphavirus
,
Alphavirus - physiology
,
Alphavirus Infections - genetics
2012
The natural maintenance cycles of many mosquito-borne pathogens require establishment of persistent non-lethal infections in the invertebrate host. The mechanism by which this occurs is not well understood, but we have previously shown that an antiviral response directed by small interfering RNAs (siRNAs) is important in modulating the pathogenesis of alphavirus infections in the mosquito. However, we report here that infection of mosquitoes with an alphavirus also triggers the production of another class of virus-derived small RNAs that exhibit many similarities to ping-pong-dependent piwi-interacting RNAs (piRNAs). However, unlike ping-pong-dependent piRNAs that have been described previously from repetitive elements or piRNA clusters, our work suggests production in the soma. We also present evidence that suggests virus-derived piRNA-like small RNAs are capable of modulating the pathogenesis of alphavirus infections in dicer-2 null mutant mosquito cell lines defective in viral siRNA production. Overall, our results suggest that a non-canonical piRNA pathway is present in the soma of vector mosquitoes and may be acting redundantly to the siRNA pathway to target alphavirus replication.
Journal Article
Repeat mediated excision of gene drive elements for restoring wild-type populations
2024
Here, we demonstrate that single strand annealing (SSA) can be co-opted for the precise autocatalytic excision of a drive element. We have termed this technology Re peat M ediated E xcision of a D rive E lement (ReMEDE). By engineering direct repeats flanking the drive allele and inducing a double-strand DNA break (DSB) at a second endonuclease target site within the allele, we increased the utilization of SSA repair. ReMEDE was incorporated into the mutagenic chain reaction (MCR) gene drive targeting the yellow gene of Drosophila melanogaster , successfully replacing drive alleles with wild-type alleles. Sequencing across the Cas9 target site confirmed transgene excision by SSA after pair-mated outcrosses with yReMEDE females, revealing ~4% inheritance of an engineered silent TcG marker sequence. However, phenotypically wild-type flies with alleles of indeterminate biogenesis also were observed, retaining the TGG sequence (~16%) or harboring a silent gGG mutation (~0.5%) at the PAM site. Additionally, ~14% of alleles in the F2 flies were intact or uncut paternally inherited alleles, indicating limited maternal deposition of Cas9 RNP. Although ReMEDE requires further research and development, the technology has some promising features as a gene drive mitigation strategy, notably its potential to restore wild-type populations without additional transgenic releases or large-scale environmental modifications.
Journal Article
The β2Tubulin, Rad50-ATPase and enolase cis-regulatory regions mediate male germline expression in Tribolium castaneum
2021
Genetics-based pest management processes, including the sterile insect technique, are an effective method for the control of some pest insects. However, current SIT methods are not directly transferable to many important pest insect species due to the lack of genetic sexing strains. Genome editing is revolutionizing the way we conduct genetics in insects, including in
Tribolium castaneum
, an important genetic model and agricultural pest. We identified orthologues of β
2
Tubulin, Rad50-ATPase and enolase in
T. castaneum.
Using RT-PCR, we confirmed that these genes are predominantly expressed in the testis.
PiggyBac
-based transformation of
T. castaneum cis-
regulatory regions derived from
Tc-β
2
t
,
Tc-rad50
or
Tc-eno
resulted in EGFP expression specifically in the
T. castaneum
testis. Additionally, we determined that each of these regulatory regions regulates EGFP expression in different cell types of the male gonad.
Cis
-regulatory regions from
Tc-β
2
t
produced EGFP expression throughout spermatogenesis and also in mature sperms;
Tc-rad50
resulted in expression only in the haploid spermatid, while
Tc-eno
expressed EGFP in late spermatogenesis. In summary, the regulatory
cis
-regions characterized in this study are not only suited to study male gonadal function but could be used for development of transgenic sexing strains that produce one sex in pest control strategies.
Journal Article
The C-Type Lectin Domain Gene Family in Aedes aegypti and Their Role in Arbovirus Infection
2018
Several medically important flaviviruses that are transmitted by mosquitoes have been shown to bind to the C-type lectin fold that is present in either vertebrate or invertebrate proteins. While in some cases this interaction is part of a neutralizing anti-viral immune response, many reports have implicated this as critical for successful virus entry. Despite the establishment of mosquito C-type lectin domain containing proteins (CTLDcps) as known host factors in assisting the infectious process for flaviviruses, little is known about the structural characteristics of these proteins and their relationships to each other. In this report, we describe the manual annotation and structural characterization of 52 Aedes aegypti CTLDcps. Using existing RNAseq data, we establish that these genes can be subdivided into two classes: those highly conserved with expression primarily in development (embryo/early larvae) and those with no clear orthologs with expression primarily in late larvae/pupae or adults. The latter group contained all CTLDcps that are regulated by the Toll/Imd immune pathways, all known microbiome-regulating CTLDcps, and almost all CTLDcps that are implicated as flavivirus host factors in A. aegypti. Finally, we attempt to synthesize results from multiple conflicting gene expression profiling experiments in terms of how flavivirus infection changes steady-state levels of mRNA encoding CTLDcps.
Journal Article
Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes
by
Wiley, Michael R
,
Adelman, Zach N
,
Morazzani, Elaine M
in
Aedes - pathogenicity
,
Aedes - virology
,
Aedes aegypti
2008
Mosquito-borne viruses cause significant levels of morbidity and mortality in humans and domesticated animals. Maintenance of mosquito-borne viruses in nature requires a biological transmission cycle that involves alternating virus replication in a susceptible vertebrate and mosquito host. Although the vertebrate infection is acute and often associated with disease, continual transmission of these viruses in nature depends on the establishment of a persistent, nonpathogenic infection in the mosquito vector. An antiviral RNAi response has been shown to limit the replication of RNA viruses in flies. However, the importance of the RNAi pathway as an antiviral defense in mammals is unclear. Differences in the immune responses of mammals and mosquitoes may explain why these viruses are not generally associated with pathology in the invertebrate host. We identified virus-derived small interfering RNAs (viRNAs), 21 nt in length, in Aedes aegypti infected with the mosquito-borne virus, Sindbis (SINV). viRNAs had an asymmetric distribution that spanned the length of the SINV genome. To determine the role of viRNAs in controlling pathogenic potential, mosquitoes were infected with recombinant alphaviruses expressing suppressors of RNA silencing. Decreased survival was observed in mosquitoes in which the accumulation of viRNAs was suppressed. These results suggest that an exogenous siRNA pathway is essential to the survival of mosquitoes infected with alphaviruses and, thus, the maintenance of these viruses in nature.
Journal Article
TALEN-Based Gene Disruption in the Dengue Vector Aedes aegypti
by
Adelman, Zach N.
,
Anderson, Michelle A. E.
,
Aryan, Azadeh
in
Aedes - genetics
,
Aedes aegypti
,
Alleles
2013
In addition to its role as the primary vector for dengue viruses, Aedes aegypti has a long history as a genetic model organism for other bloodfeeding mosquitoes, due to its ease of colonization, maintenance and reproductive productivity. Though its genome has been sequenced, functional characterization of many Ae. aegypti genes, pathways and behaviors has been slow. TALE nucleases (TALENs) have been used with great success in a number of organisms to generate site-specific DNA lesions. We evaluated the ability of a TALEN pair to target the Ae. aegypti kmo gene, whose protein product is essential in the production of eye pigmentation. Following injection into pre-blastoderm embryos, 20-40% of fertile survivors produced kmo alleles that failed to complement an existing kh(w) mutation. Most of these individuals produced more than 20% white-eyed progeny, with some producing up to 75%. Mutant alleles were associated with lesions of 1-7 bp specifically at the selected target site. White-eyed individuals could also be recovered following a blind intercross of G1 progeny, yielding several new white-eyed strains in the genetic background of the sequenced Liverpool strain. We conclude that TALENs are highly active in the Ae. aegypti germline, and have the potential to transform how reverse genetic experiments are performed in this important disease vector.
Journal Article
Impacts of diurnal temperature and larval density on aquatic development of Aedes aegypti
by
Adelman, Zach N.
,
Zapletal, Josef
,
Lawley, Mark A.
in
Biological research
,
Biology and Life Sciences
,
Health aspects
2018
The increasing range of Aedes aegypti, vector for Zika, dengue, chikungunya, and other viruses, has brought attention to the need to understand the population and transmission dynamics of this mosquito. It is well understood that environmental factors and breeding site characteristics play a role in organismal development and the potential to transmit pathogens. In this study, we observe the impact of larval density in combination with diurnal temperature on the time to pupation, emergence, and mortality of Aedes aegypti. Experiments were conducted at two diurnal temperature ranges based on 10 years of historical temperatures of Houston, Texas (21-32°C and 26.5-37.5°C). Experiments at constant temperatures (26.5°C, 32°C) were also conducted for comparison. At each temperature setting, five larval densities were observed (0.2, 1, 2, 4, 5 larvae per mL of water). Data collected shows significant differences in time to first pupation, time of first emergence, maximum rate of pupation, time of maximum rate of pupation, maximum rate of emergence, time of maximum rate of emergence, final average proportion of adult emergence, and average proportion of larval mortality. Further, data indicates a significant interactive effect between temperature fluctuation and larval density on these measures. Thus, wild population estimates should account for temperature fluctuations, larval density, and their interaction in low-volume containers.
Journal Article
Accurate Strand-Specific Quantification of Viral RNA
by
Adelman, Zach N.
,
Plaskon, Nicole E.
,
Myles, Kevin M.
in
Assaying
,
Benzothiazoles
,
Chikungunya virus
2009
The presence of full-length complements of viral genomic RNA is a hallmark of RNA virus replication within an infected cell. As such, methods for detecting and measuring specific strands of viral RNA in infected cells and tissues are important in the study of RNA viruses. Strand-specific quantitative real-time PCR (ssqPCR) assays are increasingly being used for this purpose, but the accuracy of these assays depends on the assumption that the amount of cDNA measured during the quantitative PCR (qPCR) step accurately reflects amounts of a specific viral RNA strand present in the RT reaction. To specifically test this assumption, we developed multiple ssqPCR assays for the positive-strand RNA virus o'nyong-nyong (ONNV) that were based upon the most prevalent ssqPCR assay design types in the literature. We then compared various parameters of the ONNV-specific assays. We found that an assay employing standard unmodified virus-specific primers failed to discern the difference between cDNAs generated from virus specific primers and those generated through false priming. Further, we were unable to accurately measure levels of ONNV (-) strand RNA with this assay when higher levels of cDNA generated from the (+) strand were present. Taken together, these results suggest that assays of this type do not accurately quantify levels of the anti-genomic strand present during RNA virus infectious cycles. However, an assay permitting the use of a tag-specific primer was able to distinguish cDNAs transcribed from ONNV (-) strand RNA from other cDNAs present, thus allowing accurate quantification of the anti-genomic strand. We also report the sensitivities of two different detection strategies and chemistries, SYBR(R) Green and DNA hydrolysis probes, used with our tagged ONNV-specific ssqPCR assays. Finally, we describe development, design and validation of ssqPCR assays for chikungunya virus (CHIKV), the recent cause of large outbreaks of disease in the Indian Ocean region.
Journal Article
Cooler Temperatures Destabilize RNA Interference and Increase Susceptibility of Disease Vector Mosquitoes to Viral Infection
by
Morazzani, Elaine M.
,
Adelman, Zach N.
,
Samuel, Glady Hazitha
in
Aedes - immunology
,
Aedes - radiation effects
,
Aedes - virology
2013
The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus), exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi) pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery.
We utilized transgenic \"sensor\" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These \"sensor\" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2) or Argonaute-2 (AGO-2). We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA) trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses.
This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors.
Journal Article