Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
520
result(s) for
"Néel, D"
Sort by:
Comparison of the cytotoxic, pro-oxidant and pro-inflammatory characteristics of different oxysterols
by
Vejux, A.
,
Corcos, L.
,
Bessède, G.
in
Acyl Coenzyme A - metabolism
,
Cell Membrane Permeability - drug effects
,
Cholesterol
2005
Oxidized low-density lipoproteins play important roles in the development of atherosclerosis and contain several lipid-derived, bioactive molecules which are believed to contribute to atherogenesis. Of these, some cholesterol oxidation products, referred to as oxysterols, are suspected to favor the formation of atherosclerotic plaques involving cytotoxic, pro-oxidant and pro-inflammatory processes. Ten commonly occurring oxysterols (7alpha-, 7beta-hydroxycholesterol, 7-ketocholesterol, 19-hydroxycholesterol, cholesterol-5alpha,6alpha-epoxide, cholesterol-5beta,6beta-epoxide, 22R-, 22S-, 25-, and 27-hydroxycholesterol) were studied for both their cytotoxicity and their ability to induce superoxide anion production (O2*-) and IL-8 secretion in U937 human promonocytic leukemia cells. Cytotoxic effects (phosphatidylserine externalization, loss of mitochondrial potential, increased permeability to propidium iodide, and occurrence of cells with swollen, fragmented and/or condensed nuclei) were only identified with 7beta-hydroxycholesterol, 7-ketocholesterol and cholesterol-5beta,6beta-epoxide, which also induce lysosomal destabilization associated or not associated with the formation of monodansylcadaverine-positive cytoplasmic structures. No relationship between oxysterol-induced cytotoxicity and HMG-CoA reductase activity was found. In addition, the highest O2*- overproduction quantified with hydroethidine was identified with 7beta-hydroxycholesterol, 7-ketocholesterol and cholesterol-5beta,6beta-epoxide, with cholesterol-5alpha, 6alpha-epoxide and 25-hydroxycholesterol. The highest capacity to simultaneously stimulate IL-8 secretion (quantified by ELISA and by using a multiplexed, particle-based flow cytometric assay) and enhance IL-8 mRNA levels (determined by RT-PCR) was observed with 7beta-hydroxycholesterol and 25-hydroxycholesterol. None of the effects observed for the oxysterols were detected for cholesterol. Therefore, oxysterols may have cytotoxic, oxidative, and/or inflammatory effects, or none whatsoever.
Journal Article
Data-driven predictions of complex organic mixture permeation in polymer membranes
by
Johnson, J. R.
,
Bruno, Nicholas C.
,
Marshall, Bennett D.
in
639/301/923/3931
,
639/638/898
,
Algorithms
2023
Membrane-based organic solvent separations are rapidly emerging as a promising class of technologies for enhancing the energy efficiency of existing separation and purification systems. Polymeric membranes have shown promise in the fractionation or splitting of complex mixtures of organic molecules such as crude oil. Determining the separation performance of a polymer membrane when challenged with a complex mixture has thus far occurred in an ad hoc manner, and methods to predict the performance based on mixture composition and polymer chemistry are unavailable. Here, we combine physics-informed machine learning algorithms (ML) and mass transport simulations to create an integrated predictive model for the separation of complex mixtures containing up to 400 components via any arbitrary linear polymer membrane. We experimentally demonstrate the effectiveness of the model by predicting the separation of two crude oils within 6-7% of the measurements. Integration of ML predictors of diffusion and sorption properties of molecules with transport simulators enables for the rapid screening of polymer membranes prior to physical experimentation for the separation of complex liquid mixtures.
Membranes can be used for energy efficient organic liquid mixture separations. Here the authors use machine learning and transport simulations to predict the separation of complex mixtures such as crude oils by any linear polymer membrane.
Journal Article
Understanding thromboembolus transport patterns in the brain for stroke in the presence of carotid artery stenosis
by
Jani, Neel D.
,
Roopnarinesingh, Ricardo
,
Leppert, Michelle
in
Ambiguity
,
Atherosclerosis
,
Brain
2025
Deciphering the source of an embolism is a common challenge encountered in stroke treatment. Carotid stenosis is a key source of embolic strokes. Carotid interventions can be indicated when a patient has greater than 50% stenosis in the carotid ipsilateral to the cerebral infarction, which is designated as the symptomatic carotid. However, there are often a significant number of cases where carotid emboli travel contralaterally, leading to ambiguity regarding which carotid is symptomatic. We use a patient-specific computational embolus-hemodynamics interaction model developed in prior works to conduct an in silico experiment spanning 30 heart-to-brain arterial models with differing combinations of bilateral severe and mild stenosis degrees. We used these models to study source-to-destination transport of thromboemboli released from left/right carotid disease sites, and cardiogenic sources. Across all cases considered, thromboemboli from left and right carotid sources showed non-zero contralateral transport. We also found that cardiogenic thromboemboli do not have an altered hemisphere distribution or distinct transport preference dependent on stenosis degree, thus potentially making the underlying etiology more cryptic. In patients with carotid stenosis or chronic occlusion ipsilateral to the area affected by stroke, we have demonstrated that the presence of contralateral stenosis can cause emboli that travel across the Circle of Willis (CoW) which can potentially lead to ambiguity when deciding which carotid is truly symptomatic.
Journal Article
Solution-processable polytriazoles from spirocyclic monomers for membrane-based hydrocarbon separations
by
Mathias, Ronita
,
Bechis, Irene
,
McCool, Benjamin A
in
Alkynes
,
Boiling points
,
Chain mobility
2023
The thermal distillation of crude oil mixtures is an energy-intensive process, accounting for nearly 1% of global energy consumption. Membrane-based separations are an appealing alternative or tandem process to distillation due to intrinsic energy efficiency advantages. We developed a family of spirocyclic polytriazoles from structurally diverse monomers for membrane applications. The resulting polymers were prepared by a convenient step-growth method using copper-catalysed azide–alkyne cycloaddition, providing very fast reaction rates, high molecular weights and solubilities in common organic solvents and non-interconnected microporosity. Fractionation of whole Arabian light crude oil and atmospheric tower bottom feeds using these materials enriched the low-boiling-point components and removed trace heteroatom and metal impurities (comparable performance with the lighter feed as the commercial polyimide, Matrimid), demonstrating opportunities to reduce the energy cost of crude oil distillation with tandem membrane processes. Membrane-based molecular separation under these demanding conditions is made possible by high thermal stability and a moderate level of dynamic chain mobility, leading to transient interconnections between micropores, as revealed by the calculations of static and swollen pore structures.Thermal fractionation of petroleum consumes large amounts of energy. Here stable microporous polymers are synthesized using click chemistry, which have similar performance to commercial polyimides for the fractionation of light crude oils and successful application to heavy feeds under realistic conditions.
Journal Article
Involvement of a calcium-dependent dephosphorylation of BAD associated with the localization of Trpc-1 within lipid rafts in 7-ketocholesterol-induced THP-1 cell apoptosis
by
Berthier, A
,
Monier, S
,
Gambert, P
in
Apoptosis
,
Apoptosis - drug effects
,
Apoptosis - physiology
2004
7-Ketocholesterol is a component of oxidized LDL, which plays a central role in atherosclerosis. It is a potent inducer of cell death towards a wide number of cells involved in atherosclerosis. In this study, it is reported that 7-ketocholesterol treatment induces an increase of cytosolic-free Ca
2+
in THP-1 monocytic cells. This increase is correlated with the induction of cytotoxicity as suggested from experiments using the Ca
2+
channel blockers verapamil and nifedipine. This 7-ketocholesterol-induced apoptosis appears to be associated with the dephosphorylation of serine 75 and serine 99 of the proapoptotic protein Bcl-2 antagonist of cell death (BAD). We demonstrated that this dephosphorylation results mainly from the activation of calcium-dependent phosphatase calcineurin by the oxysterol-induced increase in Ca
2+
. Moreover, this Ca
2+
increase appears related to the incorporation of 7-ketocholesterol into lipid raft domains of the plasma membrane, followed by the translocation of transient receptor potential calcium channel 1, a component of the store operated Ca
2+
entry channel, to rafts.
Journal Article
Cellular processes of v-Src transformation revealed by gene profiling of primary cells - Implications for human cancer
by
Wang, Lizhen
,
Bédard, Pierre-André
,
Maślikowski, Bart M
in
Animals
,
Biomedical and Life Sciences
,
Biomedicine
2010
Background
Cell transformation by the Src tyrosine kinase is characterized by extensive changes in gene expression. In this study, we took advantage of several strains of the Rous sarcoma virus (RSV) to characterize the patterns of v-Src-dependent gene expression in two different primary cell types, namely chicken embryo fibroblasts (CEF) and chicken neuroretinal (CNR) cells. We identified a common set of v-Src regulated genes and assessed if their expression is associated with disease-free survival using several independent human tumor data sets.
Methods
CEF and CNR cells were infected with transforming, non-transforming, and temperature sensitive mutants of RSV to identify the patterns of gene expression in response to v-Src-transformation. Microarray analysis was used to measure changes in gene expression and to define a common set of v-Src regulated genes (CSR genes) in CEF and CNR cells. A clustering enrichment regime using the CSR genes and two independent breast tumor data-sets was used to identify a 42-gene aggressive tumor gene signature. The aggressive gene signature was tested for its prognostic value by conducting survival analyses on six additional tumor data sets.
Results
The analysis of CEF and CNR cells revealed that cell transformation by v-Src alters the expression of 6% of the protein coding genes of the genome. A common set of 175 v-Src regulated genes (CSR genes) was regulated in both CEF and CNR cells. Within the CSR gene set, a group of 42 v-Src inducible genes was associated with reduced disease- and metastasis-free survival in several independent patient cohorts with breast or lung cancer. Gene classes represented within this group include DNA replication, cell cycle, the DNA damage and stress responses, and blood vessel morphogenesis.
Conclusion
By studying the v-Src-dependent changes in gene expression in two types of primary cells, we identified a set of 42 inducible genes associated with poor prognosis in breast and lung cancer. The identification of these genes provides a set of biomarkers of aggressive tumor behavior and a framework for the study of cancer cells characterized by elevated Src kinase activity.
Journal Article
Lithium suppresses motility and invasivity of v-src-transformed cells by glutathione-dependent activation of phosphotyrosine phosphatases
2009
Lithium has long been used for the treatment and prophylaxis of bipolar mood disorder. However, nerve cells are not the sole targets of lithium. Indeed, lithium was reported to target numerous cell types, and affect cell proliferation, differentiation and death. Thus, the idea has been raised that lithium may act on signaling pathways involved in neoplastic transformation. Indeed, the effect of lithium on tumor progression is currently being tested in a limited number of clinical trials. However, the molecular mechanisms by which lithium affects neoplastic transformation remain to be characterized. Here, using mouse fibroblasts transformed by the
v-src
oncogene as a model, we show that lithium drastically inhibits cell motility and compromises the invasive phenotype of
v-src
-transformed cells. In addition, we show that this effect is mediated by the activation of phosphotyrosine phosphatases, but not by the direct inhibition of the v-Src tyrosine kinase. Finally, we show that lithium activates phosphotyrosine phosphatases by the modulation of the redox status of the cell, independently of the Wnt and the inositol phosphate canonical pathways. Thus, this study supports the idea that lithium, acting similar to an antioxydizer, may have antimetastatic properties
in vivo
.
Journal Article
Keratoconus Diagnosis and Treatment: Recent Advances and Future Directions
by
Truong, Angeline
,
Bui, Anh D
,
Pasricha, Neel
in
corneal cross-linking
,
deep anterior lamellar keratoplasty
,
extracellular vesicles
2023
Keratoconus is a disorder characterized by progressive corneal thinning and steepening that may result in significant visual impairment secondary to high astigmatism, corneal scarring, or even corneal perforation. Early detection and screening of keratoconus are essential for effective management and treatment. Several screening methods, such as corneal topography and tomography, corneal biomechanics, and genetic testing, are being developed to detect keratoconus at an early stage. Once detected, prevention of progression is the mainstay of keratoconus management. Corneal collagen cross-linking is a minimally invasive treatment option that can slow or halt the progression of keratoconus. Additionally, recent studies have investigated the potential use of copper sulfate eye drops (IVMED-80) and extracellular vesicles to prevent the progression of keratoconus as non-invasive treatment options. For visual rehabilitation, currently available treatments include scleral lenses, intracorneal ring segments, corneal allogenic intrastromal ring segments, and deep anterior lamellar keratoplasty. The safety and efficacy of these emerging treatment options for keratoconus are currently being investigated.
Journal Article
The Role of Circle of Willis Anatomy Variations in Cardio-embolic Stroke: A Patient-Specific Simulation Based Study
2018
We describe a patient-specific simulation based investigation on the role of Circle of Willis anatomy in cardioembolic stroke. Our simulation framework consists of medical image-driven modeling of patient anatomy including the Circle, 3D blood flow simulation through patient vasculature, embolus transport modeling using a discrete particle dynamics technique, and a sampling based approach to incorporate parametric variations. A total of 24 (four patients and six Circle anatomies including the complete Circle) models were considered, with cardiogenic emboli of varying sizes and compositions released virtually and tracked to compute distribution to the brain. The results establish that Circle anatomical variations significantly influence embolus distribution to the six major cerebral arteries. Embolus distribution to MCA territory is found to be least sensitive to the influence of anatomical variations. For varying Circle topologies, differences in flow through cervical vasculature are observed. This incoming flow is recruited differently across the communicating arteries of the Circle for varying anastomoses. Emboli interact with the routed flow, and can undergo significant traversal across the Circle arterial segments, depending upon their inertia and density ratio with respect to blood. This interaction drives the underlying biomechanics of embolus transport across the Circle, explaining how Circle anatomy influences embolism risk.
Journal Article
QUBIC: A Fizeau Interferometer Targeting Primordial B-Modes
by
De Petris, M.
,
Kaplan, J.
,
Rigaut, O.
in
Characterization and Evaluation of Materials
,
Condensed Matter
,
Condensed Matter Physics
2016
Q and U Bolometric Interferometer for Cosmology (QUBIC) is a Fizeau interferometer sensitive to linear polarisation, to be deployed at the Antarctic station of Dome C. This experiment in its final configuration will be operated at 97, 150 and 220 GHz and is intended to target CMB primordial B-modes in a multipole window
20
<
ℓ
<
150
. A sensitivity of
r
=
0.05
(95 % CL) can be reached by the first module alone, after 2 years of operation. Here we review in particular its working principles, and we show how the QUBIC interferometric configuration can be considered equivalent to a pupil-plane filtered imaging system. In this context, we show how our instrument can be self-calibrated. Finally, we conclude by showing an overview of the first dual-band module (150/220 GHz), which will serve also as a demonstrator for the subsequent units, and review the technological choices we made for each subsystem, with particular emphasis on the detection system.
Journal Article