Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
43 result(s) for "NILON, CHARLES H."
Sort by:
Biodiversity in the city: key challenges for urban green space management
Cities play important roles in the conservation of global biodiversity, particularly through the planning and management of urban green spaces (UGS). However, UGS management is subject to a complex assortment of interacting social, cultural, and economic factors, including governance, economics, social networks, multiple stakeholders, individual preferences, and social constraints. To help deliver more effective conservation outcomes in cities, we identify major challenges to managing biodiversity in UGS and important topics warranting further investigation. Biodiversity within UGS must be managed at multiple scales while accounting for various socioeconomic and cultural influences. Although the environmental consequences of management activities to enhance urban biodiversity are now beginning to be addressed, additional research and practical management strategies must be developed to balance human needs and perceptions while maintaining ecological processes.
A Research Agenda for Urban Biodiversity in the Global Extinction Crisis
Rapid urbanization and the global loss of biodiversity necessitate the development of a research agenda that addresses knowledge gaps in urban ecology that will inform policy, management, and conservation. To advance this goal, we present six topics to pursue in urban biodiversity research: the socioeconomic and social–ecological drivers of biodiversity loss versus gain of biodiversity; the response of biodiversity to technological change; biodiversity–ecosystem service relationships; urban areas as refugia for biodiversity; spatiotemporal dynamics of species, community changes, and underlying processes; and ecological networks. We discuss overarching considerations and offer a set of questions to inspire and support urban biodiversity research. In parallel, we advocate for communication and collaboration across many fields and disciplines in order to build capacity for urban biodiversity research, education, and practice. Taken together we note that urban areas will play an important role in addressing the global extinction crisis.
Planning for the future of urban biodiversity: a global review of city-scale initiatives
Cities represent considerable opportunities for forwarding global biodiversity and sustainability goals. We developed key attributes for conserving biodiversity and for ecosystem services that should be included in urban-planning documents and reviewed 135 plans from 40 cities globally. The most common attributes in city plans were goals for habitat conservation, air and water quality, cultural ecosystem services, and ecological connectivity. Few plans included quantitative targets. This lack of measurable targets may render plans unsuccessful for an actionable approach to local biodiversity conservation. Although most cities include both biodiversity and ecosystem services, each city tends to focus on one or the other. Comprehensive planning for biodiversity should include the full range of attributes identified, but few cities do this, and the majority that do are mandated by local, regional, or federal governments to plan specifically for biodiversity conservation. This research provides planning recommendations for protecting urban biodiversity based on ecological knowledge
Invasion, Competition, and Biodiversity Loss in Urban Ecosystems
The global decline in biodiversity as a result of urbanization remains poorly understood. Whereas habitat destruction accounts for losses at the species level, it may not explain diversity loss at the community level, because urban centers also attract synanthropic species that do not necessarily exist in wildlands. Here we suggest an alternative framework for understanding this phenomenon: the competitive exclusion of native, nonsynanthropic species by invasive species. We use data from two urban centers (Phoenix and Baltimore) and two taxa (birds and spiders) to link diversity loss with reduced community evenness among species in urban communities. This reduction in evenness may be caused by a minority of invasive species dominating the majority of the resources, consequently excluding nonsynanthropic species that could otherwise adapt to urban conditions. We use foraging efficiency as a mechanism to explain the loss of diversity. Thus, to understand the effects of habitat conversion on biodiversity, and to sustain species-rich communities, future research should give more attention to interspecific interactions in urban settings.
A Beautiful Bird in the Neighborhood: Canopy Cover and Vegetation Structure Predict Avian Presence in High-Vacancy City
Urban vacant land can provide important habitat for birds, especially in cities with high concentrations of residential vacancy. Understanding which vegetation features best support urban biodiversity can inform greening strategies that benefit both wildlife and residents. This study addressed two questions: (1) How does bird species composition reflect the potential conservation value of these neighborhoods? (2) Which vegetation structures predict bird abundance across a fine-grained urban landscape? To answer these questions, we conducted avian and vegetation surveys across 100 one-hectare plots in St. Louis, Missouri, USA. These surveys showed that species richness was positively associated with canopy cover (β = 0.32, p = 0.003). Canopy cover was also the strongest predictor of American Robin (Turdus migratorius) and Northern Cardinal (Cardinalis cardinalis) abundance (β = 1.9 for both species). In contrast, impervious surfaces and abandoned buildings were associated with generalist species. European Starling (Sturnus vulgaris) abundance was strongly and positively correlated with NMS Axis 1 (r = 0.878), while Chimney Swift (Chaetura pelagica) abundance was negatively correlated (r = −0.728). These findings underscore the significance of strategic habitat management in promoting urban biodiversity and addressing ecological challenges within urban landscapes. They also emphasize the importance of integrating biodiversity goals into urban planning policies to ensure sustainable and equitable development.
Vacant lots as a habitat resource: nesting success and body condition of songbirds
Vacant lots are a common feature throughout many cities and may provide necessary habitat resources for urban bird populations. We evaluated the quality of vacant lots throughout Baltimore, Maryland, by determining how differences in vacant lot properties related to songbirds' nesting success and body condition. We observed 130 nests from American robins ( Turdus migratorius ), gray catbirds ( Dumetella carolinensis ), and northern cardinals ( Cardinalis cardinalis ) across the city and assessed body condition of 19 adult robins. Nesting success for all three species was greatest within areas of vacant lots with high shrub densities. The robins' body condition index did not vary extensively and was not related to any vacant lot site‐ or landscape‐level variables. Even so, we found vacant lots to be actively used by 60 bird species for a variety of resources, with those containing more shrubs to be the most beneficial for bird species' nesting attempts. Vacant lots should no longer be discarded and underestimated; instead, they should be valued for the opportunities they provide for generalist bird species through small‐effort habitat management practices.
A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers
Urbanization contributes to the loss of the world's biodiversity and the homogenization of its biota. However, comparative studies of urban biodiversity leading to robust generalities of the status and drivers of biodiversity in cities at the global scale are lacking. Here, we compiled the largest global dataset to date of two diverse taxa in cities: birds (54 cities) and plants (110 cities). We found that the majority of urban bird and plant species are native in the world's cities. Few plants and birds are cosmopolitan, the most common being Columba livia and Poa annua. The density of bird and plant species (the number of species per km2) has declined substantially: only 8% of native bird and 25% of native plant species are currently present compared with estimates of non-urban density of species. The current density of species in cities and the loss in density of species was best explained by anthropogenic features (landcover, city age) rather than by non-anthropogenic factors (geography, climate, topography). As urbanization continues to expand, efforts directed towards the conservation of intact vegetation within urban landscapes could support higher concentrations of both bird and plant species. Despite declines in the density of species, cities still retain endemic native species, thus providing opportunities for regional and global biodiversity conservation, restoration and education.
Hierarchical filters determine community assembly of urban species pools
The majority of humanity now lives in cities or towns, with this proportion expected to continue increasing for the foreseeable future. As novel ecosystems, urban areas offer an ideal opportunity to examine multi-scalar processes involved in community assembly as well as the role of human activities in modulating environmental drivers of biodiversity. Although ecologists have made great strides in recent decades at documenting ecological relationships in urban areas, much remains unknown, and we still need to identify the major ecological factors, aside from habitat loss, behind the persistence or extinction of species and guilds of species in cities. Given this paucity of knowledge, there is an immediate need to facilitate collaborative, interdisciplinary research on the patterns and drivers of biodiversity in cities at multiple spatial scales. In this review, we introduce a new conceptual framework for understanding the filtering processes that mold diversity of urban floras and faunas. We hypothesize that the following hierarchical series of filters influence species distributions in cities: (1) regional climatic and biogeographical factors; (2) human facilitation; (3) urban form and development history; (4) socioeconomic and cultural factors; and (5) species interactions. In addition to these filters, life history and functional traits of species are important in determining community assembly and act at multiple spatial scales. Using these filters as a conceptual framework can help frame future research needed to elucidate processes of community assembly in urban areas. Understanding how humans influence community structure and processes will aid in the management, design, and planning of our cities to best support biodiversity.
Urban biodiversity: State of the science and future directions
Since the 1990s, recognition of urban biodiversity research has increased steadily. Knowledge of how ecological communities respond to urban pressures can assist in addressing global questions related to biodiversity. To assess the state of this research field in meeting this aim, we conducted a systematic review of the urban biodiversity literature published since 1990. We obtained data from 1209 studies that sampled ecological communities representing 12 taxonomic groups. While advances have been made in the field over the last 30 years, we found that urban biodiversity research has primarily been conducted in single cities within the Palearctic and Nearctic realms, within forest remnants and residential locations, and predominantly surveys plants and birds, with significant gaps in research within the Global South and little integration of multi-species and multi-trophic interactions. Sample sizes remain limited in spatial and temporal scope, but citizen science and remote sensing resources have broadened these efforts. Analytical approaches still rely on taxonomic diversity to describe urban plant and animal communities, with increasing numbers of integrated phylogenetic and trait-based analyses. Despite the implementation of nature-based solutions across the world’s cities, only 5% of studies link biodiversity to ecosystem function and services, pointing to substantial gaps in our understanding of such solutions. We advocate for future research that encompasses a greater diversity of taxonomic groups and urban systems, focusing on biodiversity hotspots. Implementing such research would enable researchers to move forward in an equitable and multidisciplinary way to tackle the complex issues facing global urban biodiversity. Graphical abstract Word cloud from titles of 1209 publications on urban biodiversity from 1990–2018.
The phylogenetic and functional diversity of regional breeding bird assemblages is reduced and constricted through urbanization
Aim: Urbanization broadly affects the phylogenetic and functional diversity of natural communities through a variety of processes including habitat loss and the introduction of non-native species. Due to the challenge of acquiring direct measurements, these effects have been studied primarily using \"space-for-time\" substitution where spatial urbanization gradients are used to infer the consequences of urbanization occurring across time. The ability of alternative sampling designs to replicate the findings derived using space-for-time substitution has not been tested. Location: Global. Methods: We contrasted the phylogenetic and functional diversity of breeding bird assemblages in 58 cities worldwide with the corresponding regional breeding bird assemblages estimated using geographic range maps. Results: Compared to regional assemblages, urban assemblages contained lower phylogenetic diversity, lower phylogenetic beta diversity, a reduction in the least evolutionary distinct species and the loss of the most evolutionary distinct species. We found no evidence that these effects were related to the presence of non-native species. Urban assemblages contained fewer aquatic species and fewer aquatic foraging species. The distribution of body size and range size narrowed for urban assemblages with the loss of species at both tails of the distribution, especially large bodied and broadly distributed species. Urban assemblages contained a greater proportion of species classified as passerines, doves or pigeons; species identified as granivores; species that forage within vegetation or in the air; and species with more generalized associations with foraging strata. Main conclusions: Urbanization is associated with the overall reduction and constriction of phylogenetic and functional diversity, results that largely replicate those generated using space-for-time substitution, increasing our confidence in the quality of the combined inferences. When direct measurements are unavailable, our findings emphasize the value of developing independent sampling methods that broaden and reinforce our understanding of the ecological implications of urbanization.