Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
84 result(s) for "Nabeshima, Yo-ichi"
Sort by:
Vasculature-Associated Niche for Undifferentiated Spermatogonia in the Mouse Testis
Mammalian spermatogenesis produces numerous sperm for a long period based on a highly potent stem cell system, which relies on a special microenvironment, or niche, that has not yet been identified. In this study, using time-lapse imaging of green fluorescent protein-labeled undifferentiated spermatogonia (Aundiff) and three-dimensional reconstitution, we revealed a biased localization of Aundiff to the vascular network and accompanying Leydig and other interstitial cells, in intact testes. Differentiating spermatogonia left these niche regions and dispersed throughout the basal compartment of the seminiferous epithelium. Moreover, rearrangement of Aundiff accompanied the vasculature alteration. We propose that the mammalian germline niche is established as a consequence of vasculature pattern formation. This is different from what is observed in Drosophila or Caenorhabditis elegans, which display developmentally specified niche structures within polarized gonads.
Mouse macrophages show different requirements for phosphatidylserine receptor Tim4 in efferocytosis
Protein S (ProS) and growth arrest-specific 6 (Gas6) bind to phosphatidylserine (PtdSer) and induce efferocytosis upon binding TAM-family receptors (Tyro3, Axl, and Mer). Here, we produced mouse ProS, Gas6, and TAM-receptor extracellular region fused to IgG fragment crystallizable region in HEK293T cells. ProS and Gas6 bound Ca2+ dependently to PtdSer (K d 20–40 nM), Mer, and Tyro3 (K d 15–50 nM). Gas6 bound Axl strongly (K d < 1.0 nM), but ProS did not bind Axl. Using NIH 3T3-based cell lines expressing a single TAM receptor, we showed that TAM-mediated efferocytosis was determined by the receptor-binding ability of ProS and Gas6. Tim4 is a membrane protein that strongly binds PtdSer. Tim4 alone did not support efferocytosis, but enhanced TAM-dependent efferocytosis. Resident peritoneal macrophages, Kupffer cells, and CD169⁺ skin macrophages required Tim4 for TAM-stimulated efferocytosis, whereas efferocytosis by thioglycollate-elicited peritoneal macrophages or primary cultured microglia was TAM dependent, but not Tim4 dependent. These results indicate that TAM and Tim4 collaborate for efficient efferocytosis in certain macrophage populations.
Functional Hierarchy and Reversibility Within the Murine Spermatogenic Stem Cell Compartment
Stem cells support tissue maintenance by balancing self-renewal and differentiation. In mice, it is believed that a homogeneous stem cell population of single spermatogonia supports spermatogenesis, and that differentiation, which is accompanied by the formation of connected cells (cysts) of increasing length, is linear and nonreversible. We evaluated this model with the use of lineage analysis and live imaging, and found that this putative stem cell population is not homogeneous. Instead, the stem cell pool that supports steady-state spermatogenesis is contained within a subpopulation of single spermatogonia. We also found that cysts are not committed to differentiation and appear to recover stem cell potential by fragmentation, and that the fate of individual spermatogonial populations was markedly altered during regeneration after damage. Thus, there are multiple and reversible paths from stem cells to differentiation, and these may also occur in other systems.
Unique multipotent cells in adult human mesenchymal cell populations
We found adult human stem cells that can generate, from a single cell, cells with the characteristics of the three germ layers. The cells are stress-tolerant and can be isolated from cultured skin fibroblasts or bone marrow stromal cells, or directly from bone marrow aspirates. These cells can self-renew; form characteristic cell clusters in suspension culture that express a set of genes associated with pluripotency; and can differentiate into endodermal, ectodermal, and mesodermal cells both in vitro and in vivo. When transplanted into immunodeficient mice by local or i.v. injection, the cells integrated into damaged skin, muscle, or liver and differentiated into cytokeratin 14-, dystrophin-, or albumin-positive cells in the respective tissues. Furthermore, they can be efficiently isolated as SSEA-3(+) cells. Unlike authentic ES cells, their proliferation activity is not very high and they do not form teratomas in immunodeficient mouse testes. Thus, nontumorigenic stem cells with the ability to generate the multiple cell types of the three germ layers can be obtained through easily accessible adult human mesenchymal cells without introducing exogenous genes. These unique cells will be beneficial for cell-based therapy and biomedical research.
Reduced Renal α-Klotho Expression in CKD Patients and Its Effect on Renal Phosphate Handling and Vitamin D Metabolism
Renal α-Klotho (α-KL) plays a fundamental role as a co-receptor for fibroblast growth factor 23 (FGF23), a phosphaturic hormone and regulator of 1,25(OH)2 vitamin D3 (1,25VitD3). Disruption of FGF23-α-KL signaling is thought to be an early hallmark of chronic kidney disease (CKD) involving reduced renal α-KL expression and a reciprocal rise in serum FGF23. It remains unclear, however, whether the rise in FGF23 is related to the loss of renal α-KL. We evaluated α-KL expression in renal biopsy samples and measured levels of several parameters of mineral metabolism, as well as soluble α-KL (sKL), in serum and urinary samples from CKD patients (n = 236). We found that although renal α-KL levels were significantly reduced and serum FGF23 levels were significantly elevated in early and intermediate CKD, serum phosphate levels remained within the normal range. Multiple regression analysis showed that the increases in FGF23 were significantly associated with reduced renal function and elevated serum phosphate, but were not associated with loss of renal α-KL. Moreover, despite falling renal α-KL levels, the increase in FGF23 enhanced urinary fractional excretion of phosphate and reduced serum 1,25VitD3 levels in early and intermediate CKD, though not in advanced CKD. Serum sKL levels also fell significantly over the course of CKD, and renal α-KL was a significant independent determinant of sKL. These results demonstrate that FGF23 levels rise to compensate for renal failure-related phosphate retention in early and intermediate CKD. This enables FGF23-α-KL signaling and a neutral phosphate balance to be maintained despite the reduction in α-KL. In advanced CKD, however, renal α-KL declines further. This disrupts FGF23 signaling, and serum phosphate levels significantly increase, stimulating greater FGF23 secretion. Our results also suggest the serum sKL concentration may be a useful marker of renal α-KL expression levels.
Establishment of a highly sensitive sandwich ELISA for the N-terminal fragment of titin in urine
Muscle damage and loss of muscle mass are triggered by immobilization, loss of appetite, dystrophies and chronic wasting diseases. In addition, physical exercise causes muscle damage. In damaged muscle, the N-terminal and C-terminal regions of titin, a giant sarcomere protein, are cleaved by calpain-3, and the resulting fragments are excreted into the urine via glomerular filtration. Therefore, we considered titin fragments as promising candidates for reliable and non-invasive biomarkers of muscle injury. Here, we established a sandwich ELISA that can measure the titin N-terminal fragment over a biologically relevant range of concentrations, including those in urine samples from older, non-ambulatory Duchenne muscular dystrophy patients and from healthy donors under everyday life conditions and after exercise. Our results indicate that the established ELISA could be a useful tool for the screening of muscular dystrophies and also for monitoring the progression of muscle disease, evaluating the efficacy of therapeutic approaches, and investigating exercise-related sarcomeric disruption and repair processes.
Simple method for large-scale production of macrophage activating factor GcMAF
Human group-specific component protein (Gc protein) is a multifunctional serum protein which has three common allelic variants, Gc1F, Gc1S and Gc2 in humans. Gc1 contains an O-linked trisaccharide [sialic acid-galactose- N -acetylgalactosamine (GalNAc)] on the threonine 420 (Thr 420 ) residue and can be converted to a potent macrophage activating factor (GcMAF) by selective removal of sialic acid and galactose, leaving GalNAc at Thr 420 . In contrast, Gc2 is not glycosylated. GcMAF is considered a promising candidate for immunotherapy and antiangiogenic therapy of cancers and has attracted great interest, but it remains difficult to compare findings among research groups because different procedures have been used to prepare GcMAF. Here, we present a simple, practical method to prepare high-quality GcMAF by overexpressing Gc-protein in a serum-free suspension culture of ExpiCHO-S cells, without the need for a de-glycosylation step. We believe this protocol is suitable for large-scale production of GcMAF for functional analysis and clinical testing.
Relevant use of Klotho in FGF19 subfamily signaling system in vivo
α-Klotho (α-Kl) and its homolog, β-Klotho (β-Kl) are key regulators of mineral homeostasis and bile acid/cholesterol metabolism, respectively. FGF15/ humanFGF19, FGF21, and FGF23, members of the FGF19 subfamily, are believed to act as circulating metabolic regulators. Analyses of functional interactions between α- and β-Kl and FGF19 factors in wild-type, α-kl ⁻/⁻, and β-kl ⁻/⁻ mice revealed a comprehensive regulatory scheme of mineral homeostasis involving the mutually regulated positive/negative feedback actions of α-Kl, FGF23, and 1,25(OH)₂D and an analogous regulatory network composed of β-Kl, FGF15/humanFGF19, and bile acids that regulate bile acid/cholesterol metabolism. Contrary to in vitro data, β-Kl is not essential for FGF21 signaling in adipose tissues in vivo, because (i) FGF21 signals are transduced in the absence of β-Kl, (ii) FGF21 could not be precipitated by β-Kl, and (iii) essential phenotypes in Fgf21 ⁻/⁻ mice (decreased expressions of Hsl and Atgl in WAT) were not replicated in β-kl ⁻/⁻ mice. These findings suggest the existence of Klotho-independent FGF21 signaling pathway(s) where undefined cofactors are involved. One-to-one functional interactions such as α-Klotho/FGF23, β-Klotho/FGF15 (humanFGF19), and undefined cofactor/FGF21 would result in tissue-specific signal transduction of the FGF19 subfamily.
translocation causing increased α-Klotho level results in hypophosphatemic rickets and hyperparathyroidism
Phosphate homeostasis is central to diverse physiologic processes including energy homeostasis, formation of lipid bilayers, and bone formation. Reduced phosphate levels due to excessive renal loss cause hypophosphatemic rickets, a disease characterized by prominent bone defects; conversely, hyperphosphatemia, a major complication of renal failure, is accompanied by parathyroid hyperplasia, hyperparathyroidism, and osteodystrophy. Here, we define a syndrome featuring both hypophosphatemic rickets and hyperparathyroidism due to parathyroid hyperplasia as well as other skeletal abnormalities. We show that this disease is due to a de novo translocation with a breakpoint adjacent to α-Klotho, which encodes a β-glucuronidase, and is implicated in aging and regulation of FGF signaling. Plasma α-Klotho levels and β-glucuronidase activity are markedly increased in the affected patient; unexpectedly, the circulating FGF23 level is also markedly elevated. These findings suggest that the elevated α-Klotho level mimics aspects of the normal response to hyperphosphatemia and implicate α-Klotho in the selective regulation of phosphate levels and in the regulation of parathyroid mass and function; they also have implications for the pathogenesis and treatment of renal osteodystrophy in patients with kidney failure.
Clinical effects of wasabi extract containing 6-MSITC on myalgic encephalomyelitis/chronic fatigue syndrome: an open-label trial
Background Wasabi ( Eutrema japonicum ) is a common pungent spice used in Japan. 6-Methylsulfinylhexyl isothiocyanate (6-MSITC) found in the rhizome of wasabi has been shown to have anti-inflammatory and antioxidant effects, as well as improve neuroinflammation and memory. Therefore, we hypothesized that these effects would be beneficial for treating myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The present study was conducted to investigate the effectiveness of wasabi extract containing 6-MSITC on ME/CFS in an open-label trial. Methods Fifteen patients (3 males, 12 females, 20–58 years old) were orally administered wasabi extract (9.6 mg of 6-MSITC/day) for 12 weeks. The following parameters and test results were compared pre- and post-treatment: performance status (PS), self-rating questionnaires, pressure pain threshold (PPT) on the occiput, Trail Making test-A (TMT-A), and hemodynamic patterns determined by an active standing test. Results After treatment with 6-MSITC, PS improved significantly ( p  = 0.001). Although the scores on the 11-item Chalder Fatigue scale (CFS-11) and numerical rating scale (NRS) of fatigue did not show significant changes, subjective symptoms improved significantly, including headache frequency (4.1 to 3.0 times/week, p  = 0.001) and myalgia (4.1 to 2.4 times/week, p  = 0.019), NRS brain fog scores (5.7 to 4.5, p  = 0.011), difficulty finding appropriate words (4.8 to 3.7, p  = 0.015), photophobia (4.8 to 3.5, p  = 0.008), and the Profile of Mood Status vigor score (46.9 to 50.0, p  = 0.045). The PPT of the right occiput (17.3 to 21.3 kPa, p  = 0.01) and TMT-A scores (53.0 to 38.1 s, p  = 0.007) also changed, suggesting reduced pain sensitivity, and improved cognitive function, respectively. Orthostatic patterns determined by a standing test did not show remarkable changes. There were no serious adverse reactions. Conclusion This study suggests that 6-MSITC improves PS as well as subjective symptoms such as pain and cognitive dysfunction, and psychological vitality of patients with ME/CFS. It also improved cognitive performance and increased pain thresholds in these patients. 6-MSITC may be a promising therapeutic option especially for improving cognitive dysfunction associated with ME/CFS.