Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5 result(s) for "Naddaf-Sh, Sadra"
Sort by:
Clinical implementation of a bionic hand controlled with kineticomyographic signals
Sensing the proper signal could be a vital piece of the solution to the much evading attributes of prosthetic hands, such as robustness to noise, ease of connectivity, and intuitive movement. Towards this end, magnetics tags have been recently suggested as an alternative sensing mechanism to the more common EMG signals. Such sensing technology, however, is inherently invasive and hence only in simulation stages of magnet localization to date. Here, for the first time, we report on the clinical implementation of implanted magnetic tags for an amputee's prosthetic hand from both the medical and engineering perspectives. Specifically, the proposed approach introduces a flexor–extensor tendon transfer surgical procedure to implant the tags, artificial neural networks to extract human intention directly from the implanted magnet's magnetic fields -in short KineticoMyoGraphy (KMG) signals- rather than localizing them, and a game strategy to examine the proposed algorithms and rehabilitate the patient with his new prosthetic hand. The bionic hand's ability is then tested following the patient's intended gesture type and grade. The statistical results confirm the possible utility of surgically implanted magnetic tags as an accurate sensing interface for recognizing the intended gesture and degree of movement between an amputee and his bionic hand.
Real-Time Explainable Multiclass Object Detection for Quality Assessment in 2-Dimensional Radiography Images
Quality inspection and defect detection play a critical role in infrastructure safety and integrity specially when it comes to aging infrastructure mostly owned by governments around the world. One of the prevalent inspections performed in the industry is nondestructive testing (NDT) using radiography imaging. Growing demand, shortage of experts, diversity of required skills, and specific regional standards with a time-limited requirement of inspection results make automated inspection an urgent need. Therefore, utilizing artificial intelligence- (AI-) based tools as an assistive technology has become a trend for industrial applications, which automates repeated tasks and provides increased confidence before and during the inspection operation. Most of the works in quality assessment are focused on the classification of few categories of defects and mostly performed on public or noncomprehensive research datasets. In this work, a scalable, efficient, and real-time deep learning family of models for detection and classification of 10 various categories of weld characteristics on a real-world industrial dataset is presented. The models are evaluated and compared against each other, various critical hyperparameters and components are optimized, and local explainability of models is discussed. Additionally, AutoAugment for object detection and various techniques are utilized and investigated. The best performance for object detection and classification for 10 class models is reached by mean average precision of 72.4% and top-1 accuracy of 90.2%, respectively. Also, the fastest object detection model is able to evaluate a full 15360 × 1024 pixels weld image in 0.39 seconds. Finally, the proposed models are deployable on edge-devices to perform as assistant to NDT experts or auditing professionals.
An Efficient and Scalable Deep Learning Approach for Road Damage Detection
Pavement condition evaluation is essential to time the preventative or rehabilitative actions and control distress propagation. Failing to conduct timely evaluations can lead to severe structural and financial loss of the infrastructure and complete reconstructions. Automated computer-aided surveying measures can provide a database of road damage patterns and their locations. This database can be utilized for timely road repairs to gain the minimum cost of maintenance and the asphalt's maximum durability. This paper introduces a deep learning-based surveying scheme to analyze the image-based distress data in real-time. A database consisting of a diverse population of crack distress types such as longitudinal, transverse, and alligator cracks, photographed using mobile-device is used. Then, a family of efficient and scalable models that are tuned for pavement crack detection is trained, and various augmentation policies are explored. Proposed models, resulted in F1-scores, ranging from 52% to 56%, and average inference time from 178-10 images per second. Finally, the performance of the object detectors are examined, and error analysis is reported against various images. The source code is available at https://github.com/mahdi65/roadDamageDetection2020.
Anomaly Detection by Employing Root Cause Analysis and Machine Learning-based Approach Using Compressors Timeseries Data
Compressors play an essential role in the oil and gas industry by pressuring the gas along pipes. Any failure of a compressor has negative impacts on production and profit. Hence, early diagnosis of failures and predicting next-time failure is necessary to reduce the risk of shutdown and increase system reliability. This paper proposes a hybrid anomaly detection approach by employing both Root Cause Analysis (RCA) and Machine Learning (ML) techniques to combine the newly seen anomalies captured in FMEA or RCA with historical data. Employing only data-driven Machine Learning (ML) techniques, such as KNN, XGBoost, CART, LDA, and AdaBoost, on raw data for predictions can miss vital features required for finding newly seen failure modes. FMEA and corresponding RCA is a knowledgedriven approach requiring human effort, which, combined with the data-driven ML approach, can predict and detect anomalies more accurately. Here, first, data cleaning and feature selection are made. Then, the proposed methodology is empirically evaluated and tested on historical multivariate time-series data from centrifugal compressor components. We demonstrate that the presented approach and employed models such as AdaBoost would effectively conduct anomaly detection with higher scores on all evaluation metrics.
Truveta Mapper: A Zero-shot Ontology Alignment Framework
In this paper, a new perspective is suggested for unsupervised Ontology Matching (OM) or Ontology Alignment (OA) by treating it as a translation task. Ontologies are represented as graphs, and the translation is performed from a node in the source ontology graph to a path in the target ontology graph. The proposed framework, Truveta Mapper (TM), leverages a multi-task sequence-to-sequence transformer model to perform alignment across multiple ontologies in a zero-shot, unified and end-to-end manner. Multi-tasking enables the model to implicitly learn the relationship between different ontologies via transfer-learning without requiring any explicit cross-ontology manually labeled data. This also enables the formulated framework to outperform existing solutions for both runtime latency and alignment quality. The model is pre-trained and fine-tuned only on publicly available text corpus and inner-ontologies data. The proposed solution outperforms state-of-the-art approaches, Edit-Similarity, LogMap, AML, BERTMap, and the recently presented new OM frameworks in Ontology Alignment Evaluation Initiative (OAEI22), offers log-linear complexity, and overall makes the OM task efficient and more straightforward without much post-processing involving mapping extension or mapping repair. We are open sourcing our solution.