Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
20
result(s) for
"Nagata, Bianca M."
Sort by:
Human norovirus targets enteroendocrine epithelial cells in the small intestine
2020
Human noroviruses are a major cause of diarrheal illness, but pathogenesis is poorly understood. Here, we investigate the cellular tropism of norovirus in specimens from four immunocompromised patients. Abundant norovirus antigen and RNA are detected throughout the small intestinal tract in jejunal and ileal tissue from one pediatric intestinal transplant recipient with severe gastroenteritis. Negative-sense viral RNA, a marker of active viral replication, is found predominantly in intestinal epithelial cells, with chromogranin A-positive enteroendocrine cells (EECs) identified as a permissive cell type in this patient. These findings are consistent with the detection of norovirus-positive EECs in the other three immunocompromised patients. Investigation of the signaling pathways induced in EECs that mediate communication between the gut and brain may clarify mechanisms of pathogenesis and lead to the development of in vitro model systems in which to evaluate norovirus vaccines and treatment.
Human norovirus pathogenesis is incompletely understood due to a lack of appropriate animal disease models. Here, Green et al. show norovirus replication in chromogranin A-positive enteroendocrine cells and other epithelial cells in tissue from a pediatric intestinal transplant recipient with severe gastroenteritis.
Journal Article
High-resolution proteomics unveils salivary gland disruption and saliva-hemolymph protein exchange in Plasmodium-infected mosquitoes
2025
Plasmodium
sporozoites, the infective stage of malaria, must invade the mosquito salivary glands (SGs) before being transmitted to a vertebrate host. However, the physiological and biochemical effects of this invasion remain largely unexplored. We examined the impact of
Plasmodium
infection on
Anopheles gambiae
salivary glands using high-resolution proteomics, gene expression, and morphological analysis. The data reveal differential expression of various proteins, including the enrichment of hemolymph-derived humoral proteins in infected salivary glands. These proteins diffuse into the SGs due to structural damage caused by the sporozoites during invasion, while saliva proteins diffuse out into the circulation. Moreover, proteomic analysis of saliva from
P. berghei
– or
P. falciparum
–infected mosquitoes revealed changes in composition, with a pronounced reduction of immune proteins relative to uninfected mosquitoes. This reduction is likely due to the association of these proteins with the surface of sporozoites and/or changes in the saliva’s physical properties within the invaded salivary secretory cavities. The saliva protein profiles from mosquitoes infected with both
Plasmodium
species are remarkably similar, suggesting a conserved interaction between sporozoites and salivary glands. Our results provide a foundation for understanding the molecular interactions between
Plasmodium
sporozoites and mosquito salivary glands.
Plasmodium sporozoites must invade mosquito salivary glands to facilitate malaria transmission, yet the effects of this invasion are not well understood. Here, the authors use high-resolution proteomics and show that malaria parasite invasion damages mosquito salivary glands, alters saliva protein composition, and attracts immune cells, potentially increasing parasite transmission.
Journal Article
Ticks, Ixodes scapularis, Feed Repeatedly on White-Footed Mice despite Strong Inflammatory Response: An Expanding Paradigm for Understanding Tick–Host Interactions
by
Ribeiro, José M. C.
,
Anderson, Jennifer M.
,
Nagata, Bianca M.
in
Animal bites
,
Animal models
,
Animals
2017
Ticks transmit infectious agents including bacteria, viruses and protozoa. However, their transmission may be compromised by host resistance to repeated tick feeding. Increasing host resistance to repeated tick bites is well known in laboratory animals, including intense inflammation at the bite sites. However, it is not known whether this also occurs in wild rodents such as white-footed mice,
, and other wildlife, or if it occurs at all. According to the \"host immune incompetence\" hypothesis, if these mice do not have a strong inflammatory response, they would not reject repeated tick bites by
. To test this hypothesis, histopathological studies were done comparing dermal inflammation in
versus guinea pigs,
, repeatedly infested with
. In
, the immune cell composition was like that seen in laboratory mouse models, with some differences. However, there was a broad sessile lesion with intact dermal architecture, likely enabling the ticks to continue feeding unimpeded. In contrast, in
, there was a relatively similar mixed cellular profile, but there also was a large, leukocyte-filled cavitary lesion and scab-like hyperkeratotic changes to the epidermal layer, along with itching and apparent pain. Ticks attached to sensitized
fed poorly or were dislodged, presumably due to the weakened anchoring of the tick's mouthparts cemented in the heavily inflamed and disintegrating dermal tissues. This is the first time that the architecture of the skin lesions has been recognized as a major factor in understanding tick-host tolerance versus tick bite rejection. These findings broadly strengthen previous work done on lab animal models but also help explain why
can repeatedly parasitize white-footed mice, supporting the \"immune evasion theory\" but cannot repeatedly parasitize other, non-permissive hosts such as guinea pigs.
Journal Article
Epididymal epithelium propels early sexual transmission of Zika virus in the absence of interferon signaling
2021
Recognition of Zika virus (ZIKV) sexual transmission (ST) among humans challenges our understanding of the maintenance of mosquito-borne viruses in nature. Here we dissected the relative contributions of the components of male reproductive system (MRS) during early male-to-female ZIKV transmission by utilizing mice with altered antiviral responses, in which ZIKV is provided an equal opportunity to be seeded in the MRS tissues. Using microRNA-targeted ZIKV clones engineered to abolish viral infectivity to different parts of the MRS or a library of ZIKV genomes with unique molecular identifiers, we pinpoint epithelial cells of the epididymis (rather than cells of the testis, vas deferens, prostate, or seminal vesicles) as a most likely source of the sexually transmitted ZIKV genomes during the early (most productive) phase of ZIKV shedding into the semen. Incorporation of this mechanistic knowledge into the development of a live-attenuated ZIKV vaccine restricts its ST potential.
Zika virus can be sexually transmitted. Here, Pletnev et al. show in an immunocompromised mouse model that the epithelial cells of the epididymis, rather than cells of the testis, vas deferens, prostate, or seminal vesicles, are the most likely source of male-to-female sexually transmitted ZIKV genomes.
Journal Article
Routes of Zika virus dissemination in the testis and epididymis of immunodeficient mice
2018
Sexual transmission and persistence of Zika virus (ZIKV) in the male reproductive tract (MRT) poses new challenges for controlling virus outbreaks and developing live-attenuated vaccines. To elucidate routes of ZIKV dissemination in the MRT, we here generate microRNA-targeted ZIKV clones that lose the infectivity for (1) the cells inside seminiferous tubules of the testis, or (2) epithelial cells of the epididymis. We trace ZIKV dissemination in the MRT using an established mouse model of ZIKV pathogenesis. Our results support a model in which ZIKV infects the testis via a hematogenous route, while infection of the epididymis can occur via two routes: (1) hematogenous/lymphogenous and (2) excurrent testicular. Co-targeting of the ZIKV genome with brain-, testis-, and epididymis-specific microRNAs restricts virus infection of these organs, but does not affect virus-induced protective immunity in mice and monkeys. These defined alterations of ZIKV tropism represent a rational design of a safe live-attenuated ZIKV vaccine.
The mechanisms of ZIKV persistence in the male reproductive tract (MRT) are poorly understood. Here, Tsetsarkin et al. applied microRNA-targeting approach to trace routes of ZIKV dissemination in the testis and epididymis and to generate immunogenic live-attenuated ZIKV vaccine candidate, restricted for MRT infection.
Journal Article
Protection against SARS-CoV-2 infection by a mucosal vaccine in rhesus macaques
2021
Effective SARS-CoV-2 vaccines are urgently needed. Although most vaccine strategies have focused on systemic immunization, here we compared the protective efficacy of 2 adjuvanted subunit vaccines with spike protein S1: an intramuscularly primed/boosted vaccine and an intramuscularly primed/intranasally boosted mucosal vaccine in rhesus macaques. The intramuscular-alum-only vaccine induced robust binding and neutralizing antibody and persistent cellular immunity systemically and mucosally, whereas intranasal boosting with nanoparticles, including IL-15 and TLR agonists, elicited weaker T cell and Ab responses but higher dimeric IgA and IFN-α. Nevertheless, following SARS-CoV-2 challenge, neither group showed detectable subgenomic RNA in upper or lower respiratory tracts versus naive controls, indicating full protection against viral replication. Although mucosal and systemic protective mechanisms may differ, results demonstrate both vaccines can protect against respiratory SARS-CoV-2 exposure. In summary, we have demonstrated that the mucosal vaccine was safe after multiple doses and cleared the input virus more efficiently in the nasal cavity and thus may act as a potent complementary reinforcing boost for conventional systemic vaccines to provide overall better protection.
Journal Article
Plasmodium falciparum evades immunity of anopheline mosquitoes by interacting with a Pfs47 midgut receptor
by
Silva, Thiago Luiz Alves e
,
Canepa, Gaspar E.
,
Barillas-Mury, Carolina
in
Animals
,
Anopheles
,
Anopheles - genetics
2020
The surface protein Pfs47 allows Plasmodium falciparum parasites to survive and be transmitted by making them “undetectable” to the mosquito immune system. P. falciparum parasites express Pfs47 haplotypes compatible with their sympatric vectors, while those with incompatible haplotypes are eliminated by the mosquito. We proposed that Pfs47 serves as a “key” that mediates immune evasion by interacting with a mosquito receptor “the lock,” which differs in evolutionarily divergent anopheline mosquitoes. Recombinant Pfs47 (rPfs47) was used to identify the mosquito Pfs47 receptor protein (P47Rec) using far-Western analysis. rPfs47 bound to a single 31-kDa band and the identity of this protein was determined by mass spectrometry. The mosquito P47Rec has two natterin-like domains and binds to Pfs47 with high affinity (17 to 32 nM). P47Rec is a highly conserved protein with submicrovillar localization in midgut cells. It has structural homology to a cytoskeletoninteracting protein and accumulates at the site of ookinete invasion. Silencing P47Rec expression reduced P. falciparum infection, indicating that the interaction of Pfs47 with the receptor is critical for parasite survival. The binding specificity of P47Rec from distant anophelines (Anopheles gambiae, Anopheles dirus, and Anopheles albimanus) with Pfs47-Africa (GB4) and Pfs47-South America (7G8) haplotypes was evaluated, and it is in agreement with the previously documented compatibility between P. falciparum parasites expressing different Pfs47 haplotypes and these three anopheline species. Our findings give further support to the role of Pfs47 in the adaptation of P. falciparum to different vectors.
Journal Article
SARS-CoV-2 mucosal vaccine protects against clinical disease with sex bias in efficacy
by
Sui, Yongjun
,
Lewis, Mark G.
,
Berzofsky, Jay A.
in
Adjuvanted subunit vaccine
,
Allergy and Immunology
,
Animals
2024
Intranasal mucosal vaccines can more effectively induce mucosal immune responses against SARS-CoV-2. Here, we show in hamsters that an intranasal subunit mucosal vaccine boost with the beta variant S1 can prevent weight loss, in addition to reducing viral load, which cannot be studied in macaques that don’t develop COVID-like disease. Protective efficacy against both viral load and weight loss correlated with serum antibody titers. A sex bias was detected in that immune responses and protection against viral load were greater in females than males. We also found that priming with S1 from the Wuhan strain elicited lower humoral immune responses against beta variant and led to less protection against beta viral challenge, suggesting the importance of matched antigens. The greater efficacy of mucosal vaccines in the upper respiratory tract and the need to consider sex differences in vaccine protection are important in the development of future improved COVID-19 vaccines.
Journal Article
Attenuated activation of pulmonary immune cells in mRNA-1273–vaccinated hamsters after SARS-CoV-2 infection
by
Mire, Chad E.
,
Chen, Xi
,
Periasamy, Sivakumar
in
2019-nCoV Vaccine mRNA-1273
,
Animals
,
Antibodies
2021
The mRNA-1273 vaccine is effective against SARS-CoV-2 and was granted emergency use authorization by the FDA. Clinical studies, however, cannot provide the controlled response to infection and complex immunological insight that are only possible with preclinical studies. Hamsters are the only model that reliably exhibits severe SARS-CoV-2 disease similar to that in hospitalized patients, making them pertinent for vaccine evaluation. We demonstrate that prime or prime-boost administration of mRNA-1273 in hamsters elicited robust neutralizing antibodies, ameliorated weight loss, suppressed SARS-CoV-2 replication in the airways, and better protected against disease at the highest prime-boost dose. Unlike in mice and nonhuman primates, low-level virus replication in mRNA-1273-vaccinated hamsters coincided with an anamnestic response. Single-cell RNA sequencing of lung tissue permitted high-resolution analysis that is not possible in vaccinated humans. mRNA-1273 prevented inflammatory cell infiltration and the reduction of lymphocyte proportions, but enabled antiviral responses conducive to lung homeostasis. Surprisingly, infection triggered transcriptome programs in some types of immune cells from vaccinated hamsters that were shared, albeit attenuated, with mock-vaccinated hamsters. Our results support the use of mRNA-1273 in a 2-dose schedule and provide insight into the potential responses within the lungs of vaccinated humans who are exposed to SARS-CoV-2.
Journal Article
A non-human primate model for human norovirus infection
by
Gudbole, Sucheta
,
Sosnovtsev, Stanislav V.
,
Douek, Daniel C.
in
14/32
,
14/63
,
631/250/255/2514
2024
Norovirus infection can cause gastrointestinal disease in humans. Development of therapies and vaccines against norovirus have been limited by the lack of a suitable and reliable animal model. Here we established rhesus macaques as an animal model for human norovirus infection. We show that rhesus macaques are susceptible to oral infection with human noroviruses from two different genogroups. Variation in duration of virus shedding (days to weeks) between animals, evolution of the virus over the time of infection, induction of virus-specific adaptive immune responses, susceptibility to reinfection and preferential replication of norovirus in the jejunum of rhesus macaques was similar to infection reported in humans. We found minor pathological signs and changes in epithelial cell surface glycosylation patterns in the small intestine during infection. Detection of viral protein and RNA in intestinal biopsies confirmed the presence of the virus in chromogranin A-expressing epithelial cells, as it does in humans. Thus, rhesus macaques are a promising non-human primate model to evaluate vaccines and therapeutics against norovirus disease.
Rhesus macaques are susceptible to oral challenge of human noroviruses and can be used as a model to recapitulate infection and adaptive immune responses in humans.
Journal Article