Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
26
result(s) for
"Nakada, Setsuya"
Sort by:
The sequence of the 2017–2018 eruptions and seismo-acoustic activity at Kirishima volcano group
2023
Kirishima volcano consists of more than 20 eruptive centers. Among them, Shinmoe-dake had magmatic eruptions in October 2017 and March 2018. Subsequently, another active cone, Iwo-yama, had phreatic eruptions in April 2018. These events were unique in that the 2018 eruption was the first effusion-dominated eruption of Shinmoe-dake and the first simultaneous activity of two cones of the Kirishima volcanic group ever documented. We report the detailed sequence of the events by combining areal photos, satellite images, and seismo-acoustic data analyses with the other published information. The seismo-acoustic data clarify the eruption onset and the transitions of the behaviors in three stages for each of the 2017 and 2018 eruptions. For both eruptions, we present regularly repeated tremors or ’drumbeat’ earthquakes in the second stage, which interpret as gas separation from magma, leading to the ash-poor plume in the 2017 eruption or the effusive eruption in the 2018 event. We also propose that the 2017 and 2018 eruptions of Shinmoe-dake and the 2018 eruption of Iwo-yama are sequential events linked by the degassing of magma beneath Shinmoe-dake. An eruption like the 2017–2018 eruptions of Shinmoe-dake would leave few geological records and could be captured only by modern techniques. Although Shinmoe-dake has been believed to be an example of less-frequent eruptions, effusive eruptions like the 2018 case might have occurred more frequently in the past , but the following eruptions had obscured their records. The timelines summarized in this study will be useful in future studies of Kirishima volcanoes and world equivalences.
Journal Article
2014 Mount Ontake eruption: characteristics of the phreatic eruption as inferred from aerial observations
by
Nakada, Setsuya
,
Maeno, Fukashi
,
Kaneko, Takayuki
in
5. Volcanology
,
Earth and Environmental Science
,
Earth Sciences
2016
The sudden eruption of Mount Ontake on September 27, 2014, led to a tragedy that caused more than 60 fatalities including missing persons. In order to mitigate the potential risks posed by similar volcano-related disasters, it is vital to have a clear understanding of the activity status and progression of eruptions. Because the erupted material was largely disturbed while access was strictly prohibited for a month, we analyzed the aerial photographs taken on September 28. The results showed that there were three large vents in the bottom of the Jigokudani valley on September 28. The vent in the center was considered to have been the main vent involved in the eruption, and the vents on either side were considered to have been formed by non-explosive processes. The pyroclastic flows extended approximately 2.5 km along the valley at an average speed of 32 km/h. The absence of burned or fallen trees in this area indicated that the temperatures and destructive forces associated with the pyroclastic flow were both low. The distribution of ballistics was categorized into four zones based on the number of impact craters per unit area, and the furthest impact crater was located 950 m from the vents. Based on ballistic models, the maximum initial velocity of the ejecta was estimated to be 111 m/s. Just after the beginning of the eruption, very few ballistic ejecta had arrived at the summit, even though the eruption plume had risen above the summit, which suggested that a large amount of ballistic ejecta was expelled from the volcano several tens-of-seconds after the beginning of the eruption. This initial period was characterized by the escape of a vapor phase from the vents, which then caused the explosive eruption phase that generated large amounts of ballistic ejecta via sudden decompression of a hydrothermal reservoir.
Journal Article
Evaluation of vehicle running performance on ash-covered roads
by
Mitsuhiro Yoshimoto
,
Tomohiro Kubo
,
Setsuya Nakada
in
704/2151/598
,
704/4111
,
Disaster management
2023
The scale of volcanic eruptions influences the effects of wide-ranging disasters involving ashfall, such as the disruption of lifelines and paralysis of urban functions. This highlights the importance of vehicle availability on ash-covered roads for disaster management personnel involved in rescue and recovery efforts and for citizens who must evacuate or continue their social lives. We conducted tests to scientifically verify the running ability of vehicles on ash-covered roads. Results revealed that all-wheel-drive vehicles showed better running performance than two-wheel-drive vehicles, which get stuck when ashfall thickness exceeds 10 cm. Most of the vehicle’s drive power is consumed as energy to scrape ash grains from under the tires, hindering sufficient propulsion. In addition, the tires sink into the ash layer, which increases driving resistance and causes the vehicle to get stuck. Running ability on ash-covered roads is mainly determined by the relation between the “drive system” of the vehicle and the “thickness of ash” on the roads. In addition, road surface conditions, including ash thickness, could change in time and space because of traffic volume and weather conditions.
Journal Article
The color systematics of volcanic ashfall samples in estimating eruption sequences: a case study of the 2017–2018 eruption at Shinmoe-dake, Kirishima volcano, Southwest Japan
2024
The color of pyroclasts is fundamental, because it reflects various magma properties and eruption processes, including particle morphology, chemistry, and petrological characteristics. However, deriving the componentry ratio (CR) of pyroclasts for ongoing eruption monitoring remains challenging due to the lack of a robust quantitative standard. The derivation of the CR, as well as other petrological analyses, is too laborious and time-consuming to introduce as a sustainable monitoring method. To address this, we employed spectroscopic colorimetry to rapidly and quantitatively describe eruptive product colors, enabling CR derivation based on clear, objective standards for ash particle classification. Through color spectroscopy of bulk and sieved ash samples, we analyzed the major size fraction for time-series samples during the waxing stage of the 2017–2018 Shinmoe-dake eruption in Kirishima volcano, Southwest Japan. Our findings reveal that the color changes in bulk ash systematically changed with the evolution of componentry. This temporal color change was due to an increase in the amount of vesicular particles with clear glass against dark angular lava particles, as well as a grain size change, which we interpret as an indication of a transition from phreatic/phreatomagmatic to magmatic eruption. Subsequently, the color of the ash changed when the amount of different lava particles increased gradually, coinciding with a shift toward a more dominant effusion of lava. As the lava effusion continued, a slight reddening of the ash, indiscernible to the naked eye, was clearly detected by the spectrometer before the onset of intermittent Vulcanian eruptions. We interpreted this reddening as oxidation resulting from decreased ascent speed and caprock formation, which accumulates overpressure for Vulcanian explosions. These results highlight the potential of rapid, objective color value and componentry derivation for sustainable quasi-real-time monitoring of ongoing eruption materials.
Graphical Abstract
Journal Article
Eruption style transition during the 2017–2018 eruptive activity at the Shinmoedake volcano, Kirishima, Japan: surface phenomena and eruptive products
by
Shohata, Sayaka
,
Nakada, Setsuya
,
Ikenaga, Yuya
in
Ballistics
,
Chemical composition
,
Crystallinity
2023
Recent eruptions of the Shinmoedake volcano, Japan, have provided a valuable opportunity to investigate the transition between explosive and effusive eruptions. In October 2017, phreatic/phreatomagmatic explosions occurred. They were followed in March 2018 by a phase of hybrid activity with simultaneous explosions and lava flows and then a transition to intermittent, Vulcanian-style explosions. Evolution of surface phenomena, temporal variations of whole-rock chemical compositions from representative eruptive material samples, and rock microtextural properties, such as the crystallinity and crystal size distribution of juvenile products, are analyzed to characterize the eruption style transition, the conduit location, and the shallow magma conditions of the volcanic edifice. The 2017–2018 eruptive event is also compared with the preceding 2011 explosive–effusive eruption. The chemical and textural properties of the 2018 products (two types of pumice, ballistically ejected lava blocks, and massive lava) are representative of distinct cooling and magma ascent processes. The initial pumice, erupted during lava dome formation, has a groundmass crystallinity of up to 45% and the highest plagioclase number density of all products (1.9 × 106/mm3). Conversely, pumice that erupted later has the lowest plagioclase number density (1.2 × 105/mm3) and the highest nucleation density (23/mm4 in natural logarithm). This 2018 pumice is similar to the 2011 subplinian pumice. Therefore, it was likely produced by undegassed magma with a high discharge rate. Ballistics and massive lava in 2018 are comparable to the 2011 Vulcanian ballistics. Conversely, the high plagioclase number density pumice that occurred in 2018 was not observed during the 2011 eruption. Thus, such pumice might be specific to hybrid eruptions defined by small-scale explosions and lava dome formation with low magma discharge. The observed transitions and temporal variations of the activities and eruption style during the 2017–2018 Shinmoedake eruptions were primarily influenced by the ascent rate of andesitic magma and the geological structure beneath the summit crater.
Journal Article
Episode 4 (2019–2020) Nishinoshima activity: abrupt transitions in the eruptive style observed by image datasets from multiple satellites
2022
In December 2019, a new activity started at Nishinoshima volcano in the southern part of the Izu–Ogasawara arc, Japan. This is now referred to as Episode 4 of a series of activities that began in 2013. We analyzed the eruption sequence, including erupted volume and effusion rate, based on combined observations of thermal anomalies by Himawari-8 and topographic changes by ALOS-2. The total eruption volume during Episode 4 was ~ 132 × 106 m3, and the average effusion rate over the entire period was 0.51 × 106 m3 day−1 (5.9 m3 s−1), which was two to three times higher than that of Episode 1. Episode 4 had three stages. In Stage 1, effusive activity was dominant, and most of the lava erupted from a northeast vent at the foot of the pyroclastic cone to cover the northern half of the island. The average effusion rate was estimated to be 0.46 × 106 m3 day−1 (5.3 m3 s−1). In Stage 2, an intensive lava fountain with a high discharge rate developed, and it increased the size of the pyroclastic cone rapidly. The effusion rate temporarily reached 2.6 × 106 m3 day−1 (30 m3 s−1). Pyroclastic rocks accounted for 45–88% of the total erupted volume in this stage. Lava flows with rafted cone material were generated, and those possibly caused by intensive spatter falls on the slope were also formed. These lavas flowed down the southern half of the island. In Stage 3, continuous phreatomagmatic eruptions released ash and spread it over a wide area. The high effusion rate and the drastic change in the activity style in Episode 4 can be explained by deep volatile-rich magma being supplied to a shallower magma chamber prior to Episode 4. When the volatile-rich magma reached a shallow part of the conduit in Stage 2, fragmentation occurred due to rapid volume expansion to eject large amounts of magma and form the intensive lava fountain. Observations by satellite-borne ultraviolet–visible image sensors detected a rapid increase in SO2 emissions in response to the intensive lava-fountain activity. The less-differentiated nature of the ash fragments collected during Stage 2 may reflect the composition of the volatile-rich magma. Large-scale discolored-seawater areas appeared during the late period of Stage 1, which may have been caused by ascent of the volatile-rich magma.
Journal Article
The outline of the 2011 eruption at Shinmoe-dake (Kirishima), Japan
2013
The climactic phase of the 2011 eruption at Shinmoe-dake was a mixture of subplinian and vulcanian eruptive events, successive lava accumulation (lava dome) within the crater, and repetition of vulcanian events after the dome growth. It was preceded by inflation and elevated seismicity for about one year and by phreatomagmatic explosions of one week before. Small pyroclastic flows and ash-cloud surges formed during the subplinian events, when the eruption column reached the highest level and the vent was widened. A lava dome, which was extruded close to the vent of subplinian events, grew by swelling upward and filling the crater. After the vent was covered by the lava, an intense vulcanian event occurred from the base of the dome and the swelled dome became deflated. After that, vulcanian events were repeated for three months. Simultaneous eruption styles in the crater (vulcanian events, continuous ash emission and dome growth) and some phreatomagmatic events in the vulcanian stage probably are due to a complex upper-conduit system developed in water-saturated country rock.
Journal Article
Volcano observatory best practices (VOBP) workshops - a summary of findings and best-practice recommendations
by
Nakada, Setsuya
,
Mandeville, Charles
,
Eichelberger, John
in
Best practices
,
Communication
,
Earth and Environmental Science
2019
We summarize major findings and best-practice recommendations from three Volcano Observatory Best Practices (VOBP) workshops, which were held in 2011, 2013 and 2016. The workshops brought together representatives from the majority of the world’s volcano observatories for the purpose of sharing information on the operation and practice of these institutions and making best practice recommendations. The first workshop focused on eruption forecasting, the second on hazard communication, and the third on long-term hazard assessment. Subsequent VOBP workshops will address additional issues of broad interest to the international volcano observatory community. The objective of VOBP is to develop synergy among volcano hazards programs and their observatories internationally, so as to more rapidly and broadly advance the field of applied volcanology. Each of the workshop summaries presented here include best practice recommendations for consideration by the world’s volcano observatories.
Journal Article
Intermittent generation of mafic enclaves in the 1991–1995 dacite of Unzen Volcano recorded in mineral chemistry
2017
Mafic enclaves in the 1991–1995 dacite of Unzen volcano show chemical and textural variability, such as bulk SiO
2
contents ranging from 52 to 62 wt% and fine- to coarse-grained microlite textures. In this paper, we investigated the mineral chemistry of plagioclase and hornblende microlites and distinguished three enclave types. Type-I mafic enclaves contain high-Mg plagioclase and low-Cl hornblende as microlites, whereas type-III enclaves include low-Mg plagioclase and high-Cl hornblende. Type-II enclaves have an intermediate mineral chemistry. Type-I mafic enclaves tend to show a finer-grained matrix, have slightly higher bulk rock SiO
2
contents (56–60 wt%) when compared with the type-III mafic enclaves (SiO
2
= 53–59 wt%), but the overall bulk enclave compositions are within the trend of the basalt–dacite eruptive products of Quaternary monogenetic volcanoes around Unzen volcano. The origin of the variation of mineral chemistry in mafic enclaves is interpreted to reflect different degree of diffusion-controlled re-equilibration of minerals in a low-temperature mushy dacitic magma reservoir. Mafic enclaves with a long residence time in the dacitic magma reservoir, whose constituent minerals were annealed at low-temperature to be in equililbrium with the rhyolitic melt, represent type-III enclaves. In contrast, type-I mafic enclaves result from recent mafic injections with a mineral assemblage that still retains the high-temperature mineral chemistry. Taking temperature, Ca/(Ca + Na) ratio of plagioclase, and water activity of the hydrous Unzen magma into account, the Mg contents of plagioclase indicate that plagioclase microlites in type-III enclaves initially crystallized at high temperature and were subsequently re-equilibrated at low-temperature conditions. Compositional profiles of Mg in plagioclase suggest that older mafic enclaves (Type-III) had a residence time of ~100 years at 800 °C in a stagnant magma reservoir before their incorporation into the mixed dacite of the 1991–1995 Unzen eruption. Presence of different types of mafic enclaves suggests that the 1991–1995 dacite of Unzen volcano tapped mushy magma reservoir intermittently replenished by high-temperature mafic magmas.
Journal Article