Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
24 result(s) for "Nakaki, Ryo"
Sort by:
Spatiotemporal dynamics of SETD5-containing NCoR–HDAC3 complex determines enhancer activation for adipogenesis
Enhancer activation is essential for cell-type specific gene expression during cellular differentiation, however, how enhancers transition from a hypoacetylated “primed” state to a hyperacetylated-active state is incompletely understood. Here, we show SET domain-containing 5 (SETD5) forms a complex with NCoR-HDAC3 co-repressor that prevents histone acetylation of enhancers for two master adipogenic regulatory genes Cebpa and Pparg early during adipogenesis. The loss of SETD5 from the complex is followed by enhancer hyperacetylation. SETD5 protein levels were transiently increased and rapidly degraded prior to enhancer activation providing a mechanism for the loss of SETD5 during the transition. We show that induction of the CDC20 co-activator of the ubiquitin ligase leads to APC/C mediated degradation of SETD5 during the transition and this operates as a molecular switch that facilitates adipogenesis. How enhancers transition from a hypoacetylated primed state to a hyperacetylated-active state in response to differentiation stimuli is incompletely understood. Here the authors show that SETD5 forms a complex with NCoR-HDAC3 co-repressor to prevent histone acetylation of master adipogenic gene enhancers, while SETD5 degradation triggers enhancer hyperacetylation and transition to active state.
Unraveling the DNA methylation landscape in dog blood across breeds
Background DNA methylation is a covalent bond modification that is observed mainly at cytosine bases in the context of CG pairs. DNA methylation patterns reflect the status of individual tissues, such as cell composition, age, and the local environment, in mammals. Genetic factors also impact DNA methylation, and the genetic diversity among various dog breeds provides a valuable platform for exploring this topic. Compared to those in the human genome, studies on the profiling of methylation in the dog genome have been less comprehensive. Results Our study provides extensive profiling of DNA methylation in the whole blood of three dog breeds using whole-genome bisulfite sequencing. The difference in DNA methylation between breeds was moderate after removing CpGs overlapping with potential genetic variation. However, variance in methylation between individuals was common and often occurred in promoters and CpG islands (CGIs). Moreover, we adopted contextual awareness methodology to characterize DNA primary sequences using natural language processing (NLP). This method could be used to effectively separate unmethylated CGIs from highly methylated CGIs in the sequences that are identified by the conventional criteria. Conclusions This study presents a comprehensive DNA methylation landscape in the dog blood. Our observations reveal the similar methylation patterns across dog breeds, while CGI regions showed high variations in DNA methylation level between individuals. Our study also highlights the potential of NLP approach for analyzing low-complexity DNA sequences, such as CGIs.
Transfer Elastic Net for Developing Epigenetic Clocks for the Japanese Population
The epigenetic clock evaluates human biological age based on DNA methylation patterns. It takes the form of a regression model where the methylation ratio at CpG sites serves as the predictor and age as the response variable. Due to the large number of CpG sites and their correlation, Elastic Net is commonly used to train the models. However, existing standard epigenetic clocks, trained on multiracial data, may exhibit biases due to genetic and environmental differences among specific racial groups. Developing epigenetic clocks suitable for a specific single-race population requires collecting and analyzing hundreds or thousands of samples, which costs a lot of time and money. Therefore, an efficient method to construct accurate epigenetic clocks with smaller sample sizes is needed. We propose Transfer Elastic Net, a transfer learning approach that trains a model in the target population using the information of parameters estimated by the Elastic Net in a source population. Using this method, we constructed Horvath’s, Hannum’s, and Levine’s types of epigenetic clocks from blood samples of 143 Japanese subjects. The DNA methylation data were transformed through principal component analysis to obtain more reliable clocks. The developed clocks demonstrated the smallest prediction errors compared to both the original clocks and those trained with the Elastic Net on the same Japanese data. Transfer Elastic Net can also be applied to develop epigenetic clocks for other specific populations, and is expected to be applied in various fields.
Inhibition of cardiac PERK signaling promotes peripartum cardiac dysfunction
Peripartum cardiomyopathy (PPCM) is a life-threatening heart failure occurring in the peripartum period. Although mal-angiogenesis, induced by the 16-kDa N-terminal prolactin fragment (16 K PRL), is involved in the pathogenesis, the effect of full-length prolactin (23 K PRL) is poorly understood. We transfected neonate rat cardiomyocytes with plasmids containing 23 K PRL or 16 K PRL in vitro and found that 23 K PRL, but not 16 K PRL, upregulated protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling, and hypoxia promoted this effect. During the perinatal period, cardiomyocyte-specific PERK homogenous knockout (CM-KO) mice showed PPCM phenotypes after consecutive deliveries. Downregulation of PERK or JAK/STAT signaling and upregulation of apoptosis were observed in CM-KO mouse hearts. Moreover, in bromocriptine-treated CM-KO mice, cardiac function did not improve and cardiomyocyte apoptosis was not suppressed during the peripartum period. These results demonstrate that interaction between 23 K PRL and PERK signaling is cardioprotective during the peripartum term.
Downregulation of ERG and FLI1 expression in endothelial cells triggers endothelial-to-mesenchymal transition
Endothelial cell (EC) plasticity in pathological settings has recently been recognized as a driver of disease progression. Endothelial-to-mesenchymal transition (EndMT), in which ECs acquire mesenchymal properties, has been described for a wide range of pathologies, including cancer. However, the mechanism regulating EndMT in the tumor microenvironment and the contribution of EndMT in tumor progression are not fully understood. Here, we found that combined knockdown of two ETS family transcription factors, ERG and FLI1, induces EndMT coupled with dynamic epigenetic changes in ECs. Genome-wide analyses revealed that ERG and FLI1 are critical transcriptional activators for EC-specific genes, among which microRNA-126 partially contributes to blocking the induction of EndMT. Moreover, we demonstrated that ERG and FLI1 expression is downregulated in ECs within tumors by soluble factors enriched in the tumor microenvironment. These data provide new insight into the mechanism of EndMT, functions of ERG and FLI1 in ECs, and EC behavior in pathological conditions.
TET1 upregulation drives cancer cell growth through aberrant enhancer hydroxymethylation of HMGA2 in hepatocellular carcinoma
Ten‐eleven translocation 1 (TET1) is an essential methylcytosine dioxygenase of the DNA demethylation pathway. Despite its dysregulation being known to occur in human cancer, the role of TET1 remains poorly understood. In this study, we report that TET1 promotes cell growth in human liver cancer. The transcriptome analysis of 68 clinical liver samples revealed a subgroup of TET1‐upregulated hepatocellular carcinoma (HCC), demonstrating hepatoblast‐like gene expression signatures. We performed comprehensive cytosine methylation and hydroxymethylation (5‐hmC) profiling and found that 5‐hmC was aberrantly deposited preferentially in active enhancers. TET1 knockdown in hepatoma cell lines decreased hmC deposition with cell growth suppression. HMGA2 was highly expressed in a TET1high subgroup of HCC, associated with the hyperhydroxymethylation of its intronic region, marked as histone H3K4–monomethylated, where the H3K27‐acetylated active enhancer chromatin state induced interactions with its promoter. Collectively, our findings point to a novel type of epigenetic dysregulation, methylcytosine dioxygenase TET1, which promotes cell proliferation via the ectopic enhancer of its oncogenic targets, HMGA2, in hepatoblast‐like HCC. Ten‐eleven translocation 1 (TET1), a methylcytosine dioxygenase of the DNA demethylation pathway, is overexpressed in the subgroup of hepatocellular carcinoma with the hepatoblast‐like expression pattern. Comprehensive epigenome profilings revealed the ectopic enhancer activation of HMGA2 through cytosine hydroxymethylation, H3K27 acetylation, H3K4 monomethylation, and promoter‐enhancer interaction in a TET1‐dependent manner.
Histone demethylase JMJD1A coordinates acute and chronic adaptation to cold stress via thermogenic phospho-switch
In acute cold stress in mammals, JMJD1A, a histone H3 lysine 9 (H3K9) demethylase, upregulates thermogenic gene expressions through β-adrenergic signaling in brown adipose tissue (BAT). Aside BAT-driven thermogenesis, mammals have another mechanism to cope with long-term cold stress by inducing the browning of the subcutaneous white adipose tissue (scWAT). Here, we show that this occurs through a two-step process that requires both β-adrenergic-dependent phosphorylation of S265 and demethylation of H3K9me2 by JMJD1A. The histone demethylation-independent acute Ucp1 induction in BAT and demethylation-dependent chronic Ucp1 expression in beige scWAT provides complementary molecular mechanisms to ensure an ordered transition between acute and chronic adaptation to cold stress. JMJD1A mediates two major signaling pathways, namely, β-adrenergic receptor and peroxisome proliferator-activated receptor-γ (PPARγ) activation, via PRDM16-PPARγ-P-JMJD1A complex for beige adipogenesis. S265 phosphorylation of JMJD1A, and the following demethylation of H3K9me2 might prove to be a novel molecular target for the treatment of metabolic disorders, via promoting beige adipogenesis. JMJD1A is essential for thermogenic gene induction in brown adipose tissue. Here the authors show that white adipose tissue beige-ing requires both β-adrenergic-dependent phosphorylation of S265 and demethylation activity of JMJD1A while brown adipose tissue-driven thermogenesis requires β-adrenergic dependent phosphorylation of S265 but is independent of H3K9me2 demethylation.
Exploring DNA methylation profiles in blood samples of canine gastrointestinal lymphoma
Blood-based testing represents a valuable tool for the detection and monitoring of patient conditions in both human and veterinary medicine. When conventional tissue-based diagnosis is challenging, blood-derived measurements allow for minimally invasive testing. Recent studies across mammalian species, particularly in humans, have explored the use of DNA methylation from whole blood, revealing its potential to predict individual mortality and responses to environmental stresses. While it is well recognized that tumor lesions display altered epigenetic modifications across some mammalian species, little is known about how DNA methylation in blood, as an indirect tissue sample, reflects the status of individuals in dogs. In this study, we conducted whole genome bisulfite sequencing using whole blood samples from twenty dogs diagnosed with canine gastrointestinal lymphoma, which is a prevalent disease in dogs. Comparative analysis with non-lymphoma controls identified over one thousand differentially methylated regions (DMRs). To develop practical predictive models, we narrowed down the number of DMRs from the total identified to a feasible set of probes using machine learning, achieving high accuracy (0.8–0.9) in predicting lymphoma cases. Our research underscores the potential of utilizing DNA methylation from whole blood as predictors and establishes a foundational data infrastructure for genome-wide DNA methylation for canine health monitoring for future studies.
Low-dose radiation induces unstable gene expression in developing human iPSC-derived retinal ganglion organoids
The effects of low-dose radiation on undifferentiated cells carry important implications. However, the effects on developing retinal cells remain unclear. Here, we analyzed the gene expression characteristics of neuronal organoids containing immature human retinal cells under low-dose radiation and predicted their changes. Developing retinal cells generated from human induced pluripotent stem cells (iPSCs) were irradiated with either 30 or 180 mGy on days 4–5 of development for 24 h. Genome-wide gene expression was observed until day 35. A knowledge-based pathway analysis algorithm revealed fluctuations in Rho signaling and many other pathways. After a month, the levels of an essential transcription factor of eye development, the proportion of paired box 6 (PAX6)-positive cells, and the proportion of retinal ganglion cell (RGC)-specific transcription factor POU class 4 homeobox 2 (POU4F2)-positive cells increased with 30 mGy of irradiation. In contrast, they decreased after 180 mGy of irradiation. Activation of the “development of neurons” pathway after 180 mGy indicated the dedifferentiation and development of other neural cells. Fluctuating effects after low-dose radiation exposure suggest that developing retinal cells employ hormesis and dedifferentiation mechanisms in response to stress.
Dynamics of chromatin accessibility during TGF-β-induced EMT of Ras-transformed mammary gland epithelial cells
Epithelial-mesenchymal transition (EMT) is induced by transforming growth factor (TGF)-β and facilitates tumor progression. We here performed global mapping of accessible chromatin in the mouse mammary gland epithelial EpH4 cell line and its Ras-transformed derivative (EpRas) using formaldehyde-assisted isolation of regulatory element (FAIRE)-sequencing. TGF-β and Ras altered chromatin accessibility either cooperatively or independently, and AP1, ETS, and RUNX binding motifs were enriched in the accessible chromatin regions of EpH4 and EpRas cells. Etv4, an ETS family oncogenic transcription factor, was strongly expressed and bound to more than one-third of the accessible chromatin regions in EpRas cells treated with TGF-β. While knockdown of Etv4 and another ETS family member Etv5 showed limited effects on the decrease in the E-cadherin abundance and stress fiber formation by TGF-β, gene ontology analysis showed that genes encoding extracellular proteins were most strongly down-regulated by Etv4 and Etv5 siRNAs. Accordingly, TGF-β-induced expression of Mmp13 and cell invasiveness were suppressed by Etv4 and Etv5 siRNAs, which were accompanied by the reduced chromatin accessibility at an enhancer region of Mmp13 gene. These findings suggest a mechanism of transcriptional regulation during Ras- and TGF-β-induced EMT that involves alterations of accessible chromatin, which are partly regulated by Etv4 and Etv5.