Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
91
result(s) for
"Nakashima, Noriyuki"
Sort by:
Olfactory marker protein directly buffers cAMP to avoid depolarization-induced silencing of olfactory receptor neurons
2020
Olfactory receptor neurons (ORNs) use odour-induced intracellular cAMP surge to gate cyclic nucleotide-gated nonselective cation (CNG) channels in cilia. Prolonged exposure to cAMP causes calmodulin-dependent feedback-adaptation of CNG channels and attenuates neural responses. On the other hand, the odour-source searching behaviour requires ORNs to be sensitive to odours when approaching targets. How ORNs accommodate these conflicting aspects of cAMP responses remains unknown. Here, we discover that olfactory marker protein (OMP) is a major cAMP buffer that maintains the sensitivity of ORNs. Upon the application of sensory stimuli, OMP directly captured and swiftly reduced freely available cAMP, which transiently uncoupled downstream CNG channel activity and prevented persistent depolarization. Under repetitive stimulation,
OMP
-/-
ORNs were immediately silenced after burst firing due to sustained depolarization and inactivated firing machinery. Consequently,
OMP
-/-
mice showed serious impairment in odour-source searching tasks. Therefore, cAMP buffering by OMP maintains the resilient firing of ORNs.
The physiological role of the olfactory marker protein (OMP) has been elusive. Here, the authors demonstrate that OMP buffers cAMP and modulates cAMP-gated channel activity upon sensory stimulation, maintaining neuronal firing during odour-source searching.
Journal Article
Olfactory receptor 78 is expressed in hypothalamic vasopressin/oxytocin neurons, parenchymal microglia and choroidal macrophages in mice
2022
Olfactory receptors have been detected in extraolfactory organs. Olfactory receptor 78 (Olfr78), proposed to respond to small organic acids, is widely expressed in the kidney, arterioles, colon, and prostate. However, its expression patterns in the brain remain largely unknown. Using immunohistochemistry, we revealed that Olfr78 was densely expressed in the hypothalamus and choroid plexus and sparsely expressed throughout the parenchyma. By costaining with cellular markers, we further found that Olfr78 was expressed in the somata and axons of vasopressin/oxytocin neurons in the hypothalamic paraventricular/supraoptic nuclei. Olfr78 was also strongly expressed in macrophages in the choroid plexus and moderately expressed in microglia near the parenchymal vasculature. Considering that these brain regions should communicate with cerebral blood flow, Olfr78 could contribute to sensing the humoral conditions surrounding the cerebrovascular system.
Journal Article
Olfactory marker protein contains a leucine-rich domain in the Ω-loop important for nuclear export
by
Nakashima, Noriyuki
,
Nakashima, Akiko
,
Nakashima, Kie
in
Active Transport, Cell Nucleus
,
Alanine
,
Antibodies
2022
Olfactory marker protein (OMP) is a cytosolic protein expressed in mature olfactory receptor neurons (ORNs). OMP modulates cAMP signalling and regulates olfactory sensation and axonal targeting. OMP is a small soluble protein, and passive diffusion between nucleus and cytoplasm is expected. However, OMP is mostly situated in the cytosol and is only sparsely detected in the nuclei of a subset of ORNs, hypothalamic neurons and heterologously OMP-expressing cultured cells. OMP can enter the nucleus in association with transcription factors. However, how OMP is retained in the cytosol at rest is unclear. Because OMP is proposed to affect cell differentiation, it is important to understand how OMP is distributed between cytoplasm and nucleus. To elucidate the structural profile of OMP, we applied several bioinformatics methods to a multiple sequence alignment (MSA) of OMP protein sequences and ranked the evolutionarily conserved residues. In addition to the previously reported cAMP-binding domain, we identified a leucine-rich domain in the Ω-loop of OMP. We introduced mutations into the leucine-rich region and heterologously expressed the mutant OMP in HEK293T cells. Mutations into alanine increased the nuclear distribution of OMP quantified by immunocytochemistry and western blotting. Therefore, we concluded that OMP contains a leucine-rich domain important for nuclear transport.
Journal Article
Olfactory marker protein is unlikely to be cleaved by calpain 5
by
Nakashima, Noriyuki
,
Nakashima, Akiko
,
Nakashima, Kie
in
Biomedical and Life Sciences
,
Biomedicine
,
Ca2+-dependent protease
2022
Olfactory maturation marker protein (OMP) is expressed in olfactory receptor neurons and hypothalamic neurons. OMP is a nested gene located in the intron of calpain 5 (CAPN5), a Ca
2+
-dependent cysteine protease. Despite being located at the same genomic locus, genetic regulation of the reciprocal expression of OMP and CAPN5 has been suggested. By performing a motif search, we detected possible calpain cleavage sites in OMP. However, the direct proteolytic regulation of OMP by CAPN5 is unclear. Here, we generated OMP fused with Myc-tag and His-tag at its N- and C-termini and examined whether CAPN5 cleaves OMP into fragments by detecting immunoreactivity against Myc, OMP and His. Western blotting demonstrated that OMP was unlikely to be cleaved even in the presence of Ca
2+
in vitro. We expressed OMP and CAPN5 in HEK293T cells and applied a calcium ionophore under physiological conditions
in cellulo
, which resulted in no apparent fragmentation of OMP. We also applied liquid chromatography/mass spectrometry to the electrophoresed fractions smaller than the uncut Myc-OMP-His signals, which demonstrated no significant fragmentation of OMP. These results collectively indicate that OMP is unlikely to be cleaved by CAPN5.
Journal Article
Olfactory receptor neurons express olfactory marker protein but not calpain 5 from the same genomic locus
by
Nakashima, Noriyuki
,
Nakashima, Kie
,
Takano, Makoto
in
Animals
,
Biomedical and Life Sciences
,
Biomedicine
2019
Gene expression is highly regulated to functionally diversify cells. Genes that cooperate in the same physiological processes occasionally reside within nearby regions in a chromosome. Olfactory marker protein (OMP) is highly expressed in mature olfactory receptor neurons (ORNs), but its physiological roles are not fully understood. According to the genomic map, the OMP gene is located within an intron of the calcium-dependent protease, calpain 5 (CAPN5); in other words, the OMP gene is a nested intronic gene. Thus, we attempted to investigate the gene expression and protein distribution of CAPN5 in the olfactory epithelium compared with that in the central nervous system (CNS). By performing reverse-transcriptase PCR and in situ hybridization, we confirmed that CAPN5 mRNA was expressed in the olfactory epithelium. We then performed immunohistological investigations using sliced preparations obtained from mice expressing GFP under OMP promoter activity. The detected GFP fluorescence was restricted to the knob, soma and axon bundles of the ORNs, while CAPN5 immunoreactivity (CAPN5-IR) was ubiquitously detected in the olfactory epithelial layer and lamina propria; signals were strongly detected in the supporting cells within the epithelium. In the CNS, CAPN5 signals were widely detected and were especially strong in the hippocampal formation and the piriform cortex as previously indicated. Therefore, these data indicate that ORNs express OMP but not CAPN5 from CAPN5 gene expression even though they are localized in the same genomic locus. The mechanisms by which the OMP promoter is regulated require detailed investigations.
Journal Article
Overexpression of the HCN2 channel increases the arrhythmogenicity induced by hypokalemia
by
Nakagawa, Yasuaki
,
Kuwahara, Koichiro
,
Hiraki, Teruyuki
in
Animals
,
Arrhythmia
,
Arrhythmias, Cardiac - metabolism
2019
Hypokalemia, an abnormally low level of potassium (K+), is a electrolyte imbalance that commonly occurs in heart failure patients. Hypokalemia is well known to induce lethal ventricular arrhythmia. However, the effects of hypokalemia in failing hearts that have undergone electrophysiological remodeling, i.e., the reactivation of fetal-type ion channels, remain unexplored. We have examined the effect of hypokalemia in the myocytes of transgenic mice overexpressing the hyperpolarization-activated, cyclic nucleotide-sensitive (HCN) channel in the heart (HCN2-Tg mice). Perfusion with a mild hypokalemic solution containing 3mM K+ induced ectopic ventricular automaticity in 55.0% of HCN2-Tg mouse myocytes. In the remaining HCN2-Tg mouse myocytes, the resting membrane potential (RMP) was more depolarized than that of wild-type myocytes subjected to the same treatment and could also be hyperpolarized by an HCN channel blocker. We conclude that in hypokalemia in our mice model, the HCN2 channel was constitutively activated at the hyperpolarized RMP, thereby destabilizing the electrophysiological activity of ventricular myocytes.
Journal Article
Anti-PDHA1 antibody is detected in a subset of patients with schizophrenia
2020
Autoantibodies have been implicated in schizophrenia aetiology. Here, novel autoantibodies were isolated from patients with schizophrenia. Autoantibody candidates were searched using two-dimensional gel electrophoresis and western blotting with rat brain proteins as antigens and two sera pools (25 schizophrenia patients versus 25 controls) as antibodies. Immunoreactive antigens were identified by mass spectrometry. Antibody prevalence were evaluated by western blotting using human recombinant proteins. Furthermore, brain magnetic resonance imaging data (regional brain volumes and diffusion tensor imaging measures) were compared. Two proteins of the mitochondrial respiration pathway were identified as candidate antigens. Three patients with schizophrenia, but no controls, expressed antibodies targeting one of the candidate antigens, i.e., pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial (PDHA1, EC 1.2.4.1), which is related to mitochondrial energy production. Anti-PDHA1 antibody-positive patients (n = 3) had increased volumes in the left occipital fusiform gyrus compared to both controls (n = 23, p = 0.017) and antibody-negative patients (n = 16, p = 0.009), as well as in the left cuneus compared to antibody-negative patients (n = 16, p = 0.018). This is the first report of an anti-PDHA1 antibody in patients with schizophrenia. Compatible with recent findings of mitochondrial dysfunction in schizophrenia, this antibody may be involved in the pathogenesis of a specific subgroup of schizophrenia.
Journal Article
Regeneration of dermal patterns from the remaining pigments after surgery in Eublepharis macularius (a case report)
2016
Background
Dermal injury of the
Eublepharis macularius
(leopard gecko) often results in a loss of the spotted patterns. The scar is usually well recovered, but the spots and the tubercles may be lost depending on the size and part of the lesion. This report presents a surgical attempting, in which the pigments in the edge of the remaining skin flap are partially preserved to maximally restore the natural pigmentation patterns during the course of dermal regeneration.
Case presentation
A four-year-old female lizard
E. macularius
was evaluated due to a subcutaneous tumor in the occipito-pterional portion behind its right eye. A solid tumor beneath the skin was surgically enucleated under general anesthesia. Then, the ulcerated skin was dissected away together with the tumor. The necrotic edge of the remaining skin flap was carefully trimmed to leave as much of the pigmented portions as possible on the outskirt of the skin flap. The scar was covered with the remaining skin flap, and the uncovered lesion was protected with Vaseline containing gentamicin. The lesion was rapidly covered with regenerated dermis within a week, and the epidermis with round and well-oriented pigmented spots were almost completely restored in four months.
Conclusion
The surgical suture of the skin flap after removal of the ulcerated margins resulted in the scar-free regeneration of the scales and the pigmented spots. And the pigmented spots of the remaining skin close to the lesion site might be a source of the regenerated spots.
Journal Article
Expression of the pacemaker channel HCN4 in excitatory interneurons in the dorsal horn of the murine spinal cord
by
Tsuda, Makoto
,
Yasaka, Toshiharu
,
Takeya, Mitsue
in
Antibiotics
,
Antibodies
,
Artificial chromosomes
2020
In the central nervous system, hyperpolarization-activated, cyclic nucleotide-gated (HCN1–4) channels have been implicated in neuronal excitability and synaptic transmission. It has been reported that HCN channels are expressed in the spinal cord, but knowledge about their physiological roles, as well as their distribution profiles, appear to be limited. We generated a transgenic mouse in which the expression of HCN4 can be reversibly knocked down using a genetic tetracycline-dependent switch and conducted genetically validated immunohistochemistry for HCN4. We found that the somata of HCN4-immunoreactive (IR) cells were largely restricted to the ventral part of the inner lamina II and lamina III. Many of these cells were either parvalbumin- or protein kinase Cγ (PKCγ)-IR. By using two different mouse strains in which reporters are expressed only in inhibitory neurons, we determined that the vast majority of HCN4-IR cells were excitatory neurons. Mechanical and thermal noxious stimulation did not induce c-Fos expression in HCN4-IR cells. PKCγ-neurons in this area are known to play a pivotal role in the polysynaptic pathway between tactile afferents and nociceptive projection cells that contributes to tactile allodynia. Therefore, pharmacological and/or genetic manipulations of HCN4-expressing neurons may provide a novel therapeutic strategy for the pain relief of tactile allodynia.
Journal Article
A Case of Adult-Onset Periodic Fever, Aphthous Stomatitis, Pharyngitis, and Cervical Adenitis (PFAPA) Syndrome Responsive to Tonsillectomy in Japan
2019
Adult-onset periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome is a rare condition, having been reported in only three patients in Japan till date. While almost all pediatric PFAPA patients respond well to tonsillectomy, some European studies have reported that tonsillectomy may be ineffective for adult-onset PFAPA. All the Japanese patients with adult-onset PFAPA had been treated orally so far (cimetidine with or without prednisone), instead of tonsillectomy. We reported a case involving a 37-year-old Japanese man with PFAPA syndrome who presented with a history of febrile episodes associated with pharyngitis, cervical adenitis, and aphthous stomatitis for one year. The patient had been undergoing oral medication therapy without any significant improvement. Tonsillectomy was performed for the patient, and complete resolution of PFAPA was achieved. Our experience suggests that a tonsillectomy is a viable option for the treatment of adult-onset PFAPA.
Journal Article