Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
224 result(s) for "Nakashima, Yu"
Sort by:
Structure of lasso peptide epimerase MslH reveals metal-dependent acid/base catalytic mechanism
The lasso peptide MS-271 is a ribosomally synthesized and post-translationally modified peptide (RiPP) consisting of 21 amino acids with D-tryptophan at the C -terminus, and is derived from the precursor peptide MslA. MslH, encoded in the MS-271 biosynthetic gene cluster ( msl ), catalyzes the epimerization at the Cα center of the MslA C -terminal Trp21, leading to epi -MslA. The detailed catalytic process, including the catalytic site and cofactors, has remained enigmatic. Herein, based on X-ray crystallographic studies in association with MslA core peptide analogues, we show that MslH is a metallo-dependent peptide epimerase with a calcineurin-like fold. The crystal structure analysis, followed by site-directed mutagenesis, docking simulation, and ICP-MS studies demonstrate that MslH employs acid/base chemistry to facilitate the reversible epimerization of the C- terminal Trp21 of MslA, by utilizing two pairs of His/Asp catalytic residues that are electrostatically tethered to a six-coordination motif with a Ca(II) ion via water molecules. MslH, encoded in the MS-271 biosynthetic gene cluster, catalyzes the epimerization at the Cα center of the MslA C-terminal Trp21, however, the detailed catalytic process was unknown. Here, the authors report MslH is a metallo-dependent peptide epimerase with a calcineurin-like fold.
Structure function and engineering of multifunctional non-heme iron dependent oxygenases in fungal meroterpenoid biosynthesis
Non-heme iron and α-ketoglutarate (αKG) oxygenases catalyze remarkably diverse reactions using a single ferrous ion cofactor. A major challenge in studying this versatile family of enzymes is to understand their structure–function relationship. AusE from Aspergillus nidulans and PrhA from Penicillium brasilianum are two highly homologous Fe(II)/αKG oxygenases in fungal meroterpenoid biosynthetic pathways that use preaustinoid A1 as a common substrate to catalyze divergent rearrangement reactions to form the spiro-lactone in austinol and cycloheptadiene moiety in paraherquonin, respectively. Herein, we report the comparative structural study of AusE and PrhA, which led to the identification of three key active site residues that control their reactivity. Structure-guided mutagenesis of these residues results in successful interconversion of AusE and PrhA functions as well as generation of the PrhA double and triple mutants with expanded catalytic repertoire. Manipulation of the multifunctional Fe(II)/αKG oxygenases thus provides an excellent platform for the future development of biocatalysts. Non-heme iron and α-ketoglutarate (αKG) oxygenases play a major role in fungal meroterpenoid biosynthesis, but their mechanism remains elusive. Here the authors present crystal structures of two oxygenases, AusE and PrhA, which provide insights into the multifunctional nature of these enzymes.
2-Oxoglutarate derivatives can selectively enhance or inhibit the activity of human oxygenases
2-Oxoglutarate (2OG) oxygenases are validated agrochemical and human drug targets. The potential for modulating their activity with 2OG derivatives has not been explored, possibly due to concerns regarding selectivity. We report proof-of-principle studies demonstrating selective enhancement or inhibition of 2OG oxygenase activity by 2-oxo acids. The human 2OG oxygenases studied, factor inhibiting hypoxia-inducible transcription factor HIF-α (FIH) and aspartate/asparagine-β-hydroxylase (AspH), catalyze C3 hydroxylations of Asp/Asn-residues. Of 35 tested 2OG derivatives, 10 enhance and 17 inhibit FIH activity. Comparison with results for AspH reveals that 2OG derivatives selectively enhance or inhibit FIH or AspH. Comparison of FIH structures complexed with 2OG derivatives to those for AspH provides insight into the basis of the observed selectivity. 2-Oxo acid derivatives have potential as drugs, for use in biomimetic catalysis, and in functional studies. The results suggest that the in vivo activity of 2OG oxygenases may be regulated by natural 2-oxo acids other than 2OG. The human 2-oxoglutarate (2OG) oxygenases FIH and AspH are relevant drug targets. Here, the authors show that synthetic and naturally occurring 2OG derivatives can selectively modulate FIH and AspH activities, suggesting that these compounds may serve as a basis to develop 2OG oxygenase-targeting probes and drugs.
Metagenomic Analysis of the Sponge Discodermia Reveals the Production of the Cyanobacterial Natural Product Kasumigamide by ‘Entotheonella’
Sponge metagenomes are a useful platform to mine cryptic biosynthetic gene clusters responsible for production of natural products involved in the sponge-microbe association. Since numerous sponge-derived bioactive metabolites are biosynthesized by the symbiotic bacteria, this strategy may concurrently reveal sponge-symbiont produced compounds. Accordingly, a metagenomic analysis of the Japanese marine sponge Discodermia calyx has resulted in the identification of a hybrid type I polyketide synthase-nonribosomal peptide synthetase gene (kas). Bioinformatic analysis of the gene product suggested its involvement in the biosynthesis of kasumigamide, a tetrapeptide originally isolated from freshwater free-living cyanobacterium Microcystis aeruginosa NIES-87. Subsequent investigation of the sponge metabolic profile revealed the presence of kasumigamide in the sponge extract. The kasumigamide producing bacterium was identified as an 'Entotheonella' sp. Moreover, an in silico analysis of kas gene homologs uncovered the presence of kas family genes in two additional bacteria from different phyla. The production of kasumigamide by distantly related multiple bacterial strains implicates horizontal gene transfer and raises the potential for a wider distribution across other bacterial groups.
Identification of a diarylpentanoid-producing polyketide synthase revealing an unusual biosynthetic pathway of 2-(2-phenylethyl)chromones in agarwood
2-(2-Phenylethyl)chromones (PECs) are the principal constituents contributing to the distinctive fragrance of agarwood. How PECs are biosynthesized is currently unknown. In this work, we describe a diarylpentanoid-producing polyketide synthase (PECPS) identified from Aquilaria sinensis . Through biotransformation experiments using fluorine-labeled substrate, transient expression of PECPS in Nicotiana benthamiana , and knockdown of PECPS expression in A. sinensis calli, we demonstrate that the C 6 –C 5 –C 6 scaffold of diarylpentanoid is the common precursor of PECs, and PECPS plays a crucial role in PECs biosynthesis. Crystal structure (1.98 Å) analyses and site-directed mutagenesis reveal that, due to its small active site cavity (247 Å 3 ), PECPS employs a one-pot formation mechanism including a “diketide-CoA intermediate-released” step for the formation of the C 6 –C 5 –C 6 scaffold. The identification of PECPS, the pivotal enzyme of PECs biosynthesis, provides insight into not only the feasibility of overproduction of pharmaceutically important PECs using metabolic engineering approaches, but also further exploration of how agarwood is formed. 2-(2-Phenylethyl)chromones (PECs) contribute to the distinctive fragrance of agarwood. Here the authors identify a diarylpentanoid-producing polyketide synthase from Aquilaria sinensis and show how it catalyzes PEC formation.
Arginase inhibitory activities of guaiane sesquiterpenoids from Curcuma comosa rhizomes
Arginases are bimanganese enzymes involved in many human illnesses, and thus are targets for disease treatments. The screening of traditional medicinal plants demonstrated that an ethanol extract of Curcuma comosa rhizomes showed significant human arginase I and II inhibitory activity, and further fractionation led to the isolation of three known guaiane sesquiterpenoids, alismoxide ( 1 ), 7α,10α-epoxyguaiane-4α,11-diol ( 2 ) and guaidiol ( 3 ). Tests of their inhibitory activities on human arginases I and II revealed that 1 exhibited selective and potent competitive inhibition for human arginase I (IC 50  = 30.2 μM), whereas the other compounds lacked inhibitory activities against human arginases. To the best of our knowledge, this is the first demonstration of human arginase I inhibitory activity by a sesquiterpenoid. Thus, 1 is a primary and specific inhibitory molecule against human arginase I.
Calyculin biogenesis from a pyrophosphate protoxin produced by a sponge symbiont
Some toxic natural products are made in deactivated forms to avoid damage to the host. Metagenomic mining of sponge symbionts and biochemical characterization now define a new inactivating mechanism in which calyculin is made as a pyrophosphate by symbiotic bacteria and cleaved to the active monophosphate by the sponge. The Japanese marine sponge Discodermia calyx contains a major cytotoxic compound, calyculin A, which exhibits selective inhibition of protein phosphatases 1 and 2A. It has long been used as a chemical tool to evaluate intracellular signal transduction regulated by reversible protein phosphorylation. We describe the identification of the biosynthetic gene cluster of calyculin A by a metagenome mining approach. Single-cell analysis revealed that the gene cluster originates in the symbiont bacterium ' Candidatus Entotheonella' sp. A phosphotransferase encoded in the gene cluster deactivated calyculin A to produce a newly discovered diphosphate, which was actually the biosynthetic end product. The diphosphate had been previously overlooked because of the enzymatic dephosphorylation that occurred in response to sponge tissue disruption. Our work presents what is to our knowledge the first evidence for the biosynthetic process of calyculin A along with a notable phosphorylation-dephosphorylation mechanism to regulate toxicity, suggesting activated chemical defense in the most primitive of all multicellular animals.
Which modality is better to diagnose high-grade transformation in retroperitoneal liposarcoma? Comparison of computed tomography, positron emission tomography, and magnetic resonance imaging
BackgroundSurvival in patients with retroperitoneal liposarcoma (RPLS) depends on the surgical management of the dedifferentiated foci. The present study investigated the diagnostic yield of contrast-enhanced CT, 18F-fluorodeoxyglucose positron emission tomography (PET), and diffusion-weighted MRI in terms of dedifferentiated foci within the RPLS.MethodsPatients treated with primary or recurrent RPLS who underwent the above imaging between January 2010 and December 2021 were retrospectively reviewed. The diagnostic accuracy of the three modalities for histologic subtype of dedifferentiated liposarcoma (DDLS) and French Federation of Cancer Center (FNCLCC) grade 2/3 were compared using receiver operating characteristic curves and areas under the curves (AUCs).ResultsThe cohort involved 32 patients with 53 tumors; 30 of which exhibited DDLS and 31 of which did FNCLCC grades 2/3. The optimal thresholds for predicting DDLS were mean CT value of 31 Hounsfield Unit (HU) (AUC = 0.880, 95% CI 0.775–0.984; p < 0.001), maximum standardized uptake value (SUVmax) of 2.9 (AUC = 0.865 95% CI 0.792–0.980; p < 0.001), while MRI failed to differentiate DDLS. The cutoff values for distinguishing FNCLCC grades 1 and 2/3 were a mean CT value of 24 HU (AUC = 0.858, 95% CI 0.731–0.985; p < 0.001) and SUVmax of 2.9 (AUC = 0.885, 95% CI 0.792–0.978; p < 0.001). MRI had no sufficient power to separate these grades.ConclusionsContrast-enhanced CT and PET were useful for predicting DDLS and FNCLCC grade 2/3, while MRI was inferior to these two modalities.
Prevention of Acute Upper Respiratory Infections by Consumption of Catechins in Healthcare Workers: A Randomized, Placebo-Controlled Trial
Catechins, phytochemicals contained mainly in green tea, exhibit antiviral activity against various acute infectious diseases experimentally. Clinical evidence supporting these effects, however, is not conclusive. We performed a placebo-controlled, single-blind, randomized control trial to evaluate the clinical effectiveness of consumption of catechins-containing beverage for preventing acute upper respiratory tract infections (URTIs). Two hundred and seventy healthcare workers were randomly allocated to high-catechin (three daily doses of 57 mg catechins and 100 mg xanthan gum), low-catechin (one daily dose of 57 mg catechins and 100 mg xanthan gum), or placebo (0 mg catechins and 100 mg xanthan gum) group. Subjects consumed a beverage with or without catechins for 12 weeks from December 2017 through February 2018. The primary endpoint was incidence of URTIs compared among groups using a time-to-event analysis. A total of 255 subjects were analyzed (placebo group n = 86, low-catechin group n = 85, high catechin group n = 84). The URTI incidence rate was 26.7% in the placebo group, 28.2% in the low-catechin group, and 13.1% in the high-catechin group (log rank test, p = 0.042). The hazard ratio (95% confidence interval (CI)) with reference to the placebo group was 1.09 (0.61–1.92) in the low-catechin group and 0.46 (0.23–0.95) in the high-catechin group. These findings suggest that catechins combined with xanthan gum protect against URTIs.
Specific expression of MUC21 in micropapillary elements of lung adenocarcinomas – Implications for the progression of EGFR-mutated lung adenocarcinomas
We investigated the significance of MUC21 in EGFR-mutated lung adenocarcinoma (LADC). Two-hundred forty-one surgically resected LADCs (116 EGFR-mutated and 125 wild-type tumors) were examined for immunohistochemical expression of MUC21 protein. A polyclonal antibody and two monoclonal antibodies (heM21C and heM21D) that bind differentially glycosylated MUC21 epitopes were used, and MUC21 proteins detected by these antibodies were named MUC21P, MUC21C, and MUC21D, respectively. MUC21 mRNA levels were semi-quantified and classified into \"high\" and \"low\". Among the immunohistochemical expression detected by three different antibodies, high expressors tended to be related to EGFR mutations. The three varieties of the immunohistochemical expressions were related to different histological elements in the EGFR-mutated LADCs. Either MUC21P or MUC21C high expressors had a higher proportion of lepidic elements with low papillary structure and micropapillary elements. MUC21D high expressors had a significantly higher proportion of micropapillary elements (Mann-Whitney test P ≤0.0001). Furthermore, MUC21D high expressors showed high incidence of lymphatic canal invasion and lymph node metastasis (Pearson x2 test, P = 0.0021, P = 0.0125), and a significantly higher recurrence rate (5-year recurrence-free survival 50.7% vs. 73.8%, log-rank test P = 0.0495). MUC21 proteins with a specific glycosylation status may be involved in the progression of EGFR-mutated LADCs, particularly at the stage where tumors are transforming from pure lepidic to micropapillary through low papillary lepidic lesions.