Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5 result(s) for "Nakombo-Gbassault, Princia"
Sort by:
Genetic control of the leaf ionome in pearl millet and correlation with root and agromorphological traits
Pearl millet ( Pennisetum glaucum ) thrives in arid and nutrient-poor environments, establishing its role as a crucial cereal crop for food security in sub-Saharan Africa. Despite its remarkable adaptability, its yields remain below genetic potential, primarily due to limited water and nutrient availability. In this study, we conducted ionomic profiling and genome-wide association studies (GWAS) in field conditions across two growing seasons to unravel the genetic basis of nutrient acquisition in pearl millet. Soil ion content analyses revealed significant differences in nutrient distribution between field sites, while certain ions, such as phosphorus (P) and zinc (Zn), consistently displayed stratified accumulation patterns across years, suggesting stable depth-dependent trends. Evaluation of a genetically diverse panel of inbred lines revealed substantial variation in leaf ion concentrations, with high heritability estimates. Correlations between leaf ion content and root anatomical or agromorphological traits highlighted the intricate interplay between genetic and environmental factors shaping leaf ion accumulation. These analyses also uncovered potential trade-offs in nutrient acquisition strategies. GWAS identified genomic regions associated with leaf ion concentrations, and the integration of genetic and gene expression data facilitated the identification of candidate genes implicated in ion transport and homeostasis. Our findings provide valuable insights into the genetic regulation of nutrient acquisition in pearl millet, offering potential targets for breeding nutrient-efficient and climate-resilient varieties. This study underscores the importance of integrating genetic, physiological, and root architectural traits to enhance agricultural productivity and sustainability in resource-constrained environments.
Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet
Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root system features a single fast-growing primary root which we hypothesize is an adaptation to the Sahelian climate. Using crop modeling, we demonstrate that early drought stress is an important constraint in agrosystems in the Sahel where pearl millet was domesticated. Furthermore, we show that increased pearl millet primary root growth is correlated with increased early water stress tolerance in field conditions. Genetics including genome-wide association study and quantitative trait loci (QTL) approaches identify genomic regions controlling this key root trait. Combining gene expression data, re-sequencing and re-annotation of one of these genomic regions identified a glutaredoxin-encoding gene PgGRXC9 as the candidate stress resilience root growth regulator. Functional characterization of its closest Arabidopsis homolog AtROXY19 revealed a novel role for this glutaredoxin (GRX) gene clade in regulating cell elongation. In summary, our study suggests a conserved function for GRX genes in conferring root cell elongation and enhancing resilience of pearl millet to its Sahelian environment. Pearl millet is a staple food for over 90 million people living in regions of Africa and India that typically experience high temperatures and little rainfall. It was domesticated about 4,500 years ago in the Sahel region of West Africa and is one of the most heat and drought tolerant cereal crops worldwide. In most plants, organs known as roots absorb water and essential nutrients from the soil. Young pearl millet plants develop a fast-growing primary root, but it is unclear how this unique feature helps the crop to grow in hot and dry conditions. Using weather data collected from the Sahel over a 20-year period, Fuente, Grondin et al. predicted by modelling that early drought stress is the major factor limiting pearl millet growth and yield in this region. Field experiments found that plants with primary roots that grow faster within soil were better at tolerating early drought than those with slower growing roots. Further work using genetic approaches revealed that a gene known as PgGRXC9 promotes the growth of the primary root. To better understand how this gene works, the team examined a very similar gene in a well-studied model plant known as Arabidopsis. This suggested that PgGRXC9 helps the primary root to grow by stimulating cell elongation within the root. Since it is well adapted to dry conditions, pearl millet is expected to play an important role in helping agriculture adjust to climate change. The findings of Fuente, Grondin et al. may be used by plant breeders to create more resilient and productive varieties of pearl millet.
Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet
Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root system features a single fast-growing primary root which we hypothesize is an adaptation to the Sahelian climate. Using crop modeling, we demonstrate that early drought stress is an important constraint in agrosystems in the Sahel where pearl millet was domesticated. Furthermore, we show that increased pearl millet primary root growth is correlated with increased early water stress tolerance in field conditions. Genetics including genome-wide association study and quantitative trait loci (QTL) approaches identify genomic regions controlling this key root trait. Combining gene expression data, re-sequencing and re-annotation of one of these genomic regions identified a glutaredoxin-encoding gene PgGRXC9 as the candidate stress resilience root growth regulator. Functional characterization of its closest Arabidopsis homolog AtROXY19 revealed a novel role for this glutaredoxin (GRX) gene clade in regulating cell elongation. In summary, our study suggests a conserved function for GRX genes in conferring root cell elongation and enhancing resilience of pearl millet to its Sahelian environment. Pearl millet is a staple food for over 90 million people living in regions of Africa and India that typically experience high temperatures and little rainfall. It was domesticated about 4,500 years ago in the Sahel region of West Africa and is one of the most heat and drought tolerant cereal crops worldwide. In most plants, organs known as roots absorb water and essential nutrients from the soil. Young pearl millet plants develop a fast-growing primary root, but it is unclear how this unique feature helps the crop to grow in hot and dry conditions. Using weather data collected from the Sahel over a 20-year period, Fuente, Grondin et al. predicted by modelling that early drought stress is the major factor limiting pearl millet growth and yield in this region. Field experiments found that plants with primary roots that grow faster within soil were better at tolerating early drought than those with slower growing roots. Further work using genetic approaches revealed that a gene known as PgGRXC9 promotes the growth of the primary root. To better understand how this gene works, the team examined a very similar gene in a well-studied model plant known as Arabidopsis. This suggested that PgGRXC9 helps the primary root to grow by stimulating cell elongation within the root. Since it is well adapted to dry conditions, pearl millet is expected to play an important role in helping agriculture adjust to climate change. The findings of Fuente, Grondin et al. may be used by plant breeders to create more resilient and productive varieties of pearl millet.
Genetic control of the leaf ionome in pearl millet and correlation with root and agromorphological traits
Pearl millet (Pennisetum glaucum) thrives in arid and nutrient-poor environments, establishing its role as a crucial cereal crop for food security in sub-Saharan Africa. Despite its remarkable adaptability, its yields remain below genetic potential, primarily due to limited water and nutrient availability. In this study, we conducted ionomic profiling and genome-wide association studies (GWAS) in field conditions across two growing seasons to unravel the genetic basis of nutrient acquisition in pearl millet. Soil ion content analyses revealed significant differences in nutrient distribution between field sites, while certain ions, such as phosphorus (P) and zinc (Zn), consistently displayed stratified accumulation patterns across years, suggesting stable depth-dependent trends. Evaluation of a genetically diverse panel of inbred lines revealed substantial variation in leaf ion concentrations, with high heritability estimates. Correlations between leaf ion content and root anatomical or agromorphological traits highlighted the intricate interplay between genetic and environmental factors shaping leaf ion accumulation. These analyses also uncovered potential trade-offs in nutrient acquisition strategies. GWAS identified genomic regions associated with leaf ion concentrations, and the integration of genetic and gene expression data facilitated the identification of candidate genes implicated in ion transport and homeostasis. Our findings provide valuable insights into the genetic regulation of nutrient acquisition in pearl millet, offering potential targets for breeding nutrient-efficient and climate-resilient varieties. This study underscores the importance of integrating genetic, physiological, and root architectural traits to enhance agricultural productivity and sustainability in resource-constrained environments.Competing Interest StatementThe authors have declared no competing interest.
Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet
Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet early root system features a single fast-growing primary root which we hypothesize is an adaptation to the Sahelian climate. Using crop modelling, we demonstrate that early drought stress is an important constraint in agrosystems in the Sahel where pearl millet was domesticated. Furthermore, we show that increased pearl millet primary root growth is correlated with increased early water stress tolerance in field conditions. Genetics including GWAS and QTL approaches identify genomic regions controlling this key root trait. Combining gene expression data, re-sequencing and re-annotation of one of these genomic regions identified a glutaredoxin-encoding gene PgGRXC9 as the candidate stress resilience root growth regulator. Functional characterization of its closest Arabidopsis homolog AtROXY19 revealed a novel role for this glutaredoxin (GRX) gene clade in regulating cell elongation. In summary, our study suggests a conserved function for GRX genes in conferring root cell elongation and enhancing resilience of pearl millet to its Sahelian environment.Competing Interest StatementThe authors have declared no competing interest.Footnotes* Added explanation on the population genetics and transcriptomics. Revised figure 4 to include a scalebar. Changed the conclusion to tone down some sentences.