Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
138
result(s) for
"Nam, Ki Taek"
Sort by:
RAE1 mediated ZEB1 expression promotes epithelial–mesenchymal transition in breast cancer
2019
Breast cancer metastasis accounts for most of the deaths from breast cancer. Since epithelial-mesenchymal transition (EMT) plays an important role in promoting metastasis of cancer, many mechanisms regarding EMT have been studied. We previously showed that Ribonucleic acid export 1 (RAE1) is dysregulated in breast cancer and its overexpression leads to aggressive breast cancer phenotypes by inducing EMT. Here, we evaluated the functional capacity of RAE1 in breast cancer metastasis by using a three-dimensional (3D) culture system and xenograft models. Furthermore, to investigate the mechanisms of RAE1-driven EMT,
in vitro
studies were carried out. The induction of EMT with RAE1-overexpression was confirmed under the 3D culture system and
in vivo
system. Importantly, RAE1 mediates upregulation of an EMT marker ZEB1, by binding to the promoter region of
ZEB1
. Knockdown of ZEB1 in RAE1-overexpressing cells suppressed invasive and migratory behaviors, accompanied by an increase in epithelial and a decrease in mesenchymal markers. Taken together, these data demonstrate that RAE1 contributes to breast cancer metastasis by regulating a key EMT-inducing factor ZEB1 expression, suggesting its potential as a therapeutic target.
Journal Article
Olig2 regulates p53-mediated apoptosis, migration and invasion of melanoma cells
by
Myung, Cheol Hwan
,
Ryu, Jong Hyuk
,
Nam, Ki Taek
in
1-Phosphatidylinositol 3-kinase
,
631/80/82
,
631/80/83
2021
Melanoma is a disease with a high recurrence rate and poor prognosis; therefore, the need for targeted therapeutics is steadily increasing. Oligodendrocyte transcription factor2 (Olig2) is a basic helix-loop-helix transcription factor that is expressed in the central nervous system during embryonic development. Olig2 is overexpressed in various malignant cell lines such as lung carcinoma, glioma and melanoma. Olig2 is known as a key transcription factor that promotes tumor growth in malignant glioma. However, the role of Olig2 in melanoma is not well characterized. We analyzed the role of Olig2 in apoptosis, migration, and invasion of melanoma cells. We confirmed that Olig2 was overexpressed in melanoma cells and tissues. Reduction of Olig2 increased apoptosis in melanoma cells by increasing p53 level and caspase-3/-7 enzyme activity. In addition, downregulation of Olig2 suppressed migration and invasion of melanoma cells by inhibiting EMT. Reduction of Olig2 inhibited expression of MMP-1 and the enzyme activity of MMP-2/-9 induced by TGF-β. Moreover, Olig2 was involved in the downstream stages of MEK/ERK and PI3K/AKT, which are major signaling pathways in metastatic progression of melanoma. In conclusion, this study demonstrated the crucial roles of Olig2 in apoptosis, migration, and invasion of melanoma and may help to further our understanding of the relationship between Olig2 and melanoma progression.
Journal Article
The position of the target site for engineered nucleases improves the aberrant mRNA clearance in in vivo genome editing
2020
Engineered nucleases are widely used for creating frameshift or nonsense mutations in the target genes to eliminate gene functions. The resulting mRNAs carrying premature termination codons can be eliminated by nonsense-mediated mRNA decay. However, it is unclear how effective this process would be
in vivo
. Here, we found that the nonsense-mediated decay was unable to remove the mutant mRNAs in twelve out of sixteen homozygous mutant mice with frameshift mutations generated using engineered nucleases, which is far beyond what we expected. The frameshift mutant proteins translated by a single nucleotide deletion within the coding region were also detected in the
p53
mutant mice. Furthermore, we showed that targeting the exons present downstream of the exons with a start codon or distant from ATG is relatively effective for eliminating mutant mRNAs
in vivo
, whereas the exons with a start codon are targeted to express the mutant mRNAs. Of the sixteen mutant mice generated, only four mutant mice targeting the downstream exons exhibited over 80% clearance of mutant mRNAs. Since the abnormal products, either mutant RNAs or mutant proteins, expressed by the target alleles might obscure the outcome of genome editing, these findings will provide insights in the improved performance of engineered nucleases when they are applied
in vivo
.
Journal Article
An infographic on laboratory animal veterinarians
2025
Background
Laboratory animal veterinarians play a crucial role as a bridge between the ethical use of laboratory animals and the advancement of scientific and medical knowledge in biomedical research. They alleviate pain and reduce distress through veterinary care of laboratory animals. Additionally, they enhance animal welfare by creating environments that mimic natural habitats through environmental enrichment and social associations. This approach reduces errors caused by improper animal management and enhances the reproducibility of animal experiments, thereby contributing significantly to scientific progress.
Results
The Korean College of Laboratory Animal Medicine, established in 2006, aims to formalize the status of laboratory animal veterinarians. The revised Animal Protection Act of April 2022 mandates the employment of attending veterinarians in animal research facilities exceeding prescribed standards by Presidential Decree. This underscores the increasing importance of laboratory animal veterinarians in Korean society. Consequently, the Korean College of Laboratory Animal Medicine initiated efforts to raise awareness of laboratory animal veterinarians, leading to the creation of an infographic. Infographics combine textual and graphical elements to effectively convey information, data, and knowledge. These veterinarians collaborated with infographic specialists to research, check, classify, refine, analyze, and structure content on laboratory animal veterinarians.
Conclusion
This infographic represents the first comprehensive initiative worldwide on laboratory animal veterinarians. It will be disseminated globally to animal research facilities to enhance awareness and promote the professional standing of laboratory animal veterinarians.
Journal Article
Transcriptome Analysis and the Prognostic Role of NUDC in Diffuse and Intestinal Gastric Cancer
by
Kim, Tae-Han
,
Nam, Ki Taek
,
Jung, Eun-Jung
in
Aged
,
Bioinformatics
,
Biomarkers, Tumor - genetics
2021
Introduction:
There have been few studies about gene differences between patients with diffuse-type gastric cancer and those with intestinal-type gastric cancer. The aim of this study was to compare the transcriptomes of signet ring cell gastric cancer (worst prognosis in diffuse-type) and well-differentiated gastric cancer (best prognosis in intestinal-type); NUDC was identified, and its prognostic role was studied.
Materials and Methods:
We performed next-generation sequencing with 5 well-differentiated gastric cancers and 3 of signet ring cell gastric cancer surgical samples. We performed gene enrichment and functional annotation analysis using the Database for Annotation, Visualization and Integrated Discovery bioinformatics resources. Immunohistochemistry was used to validate NUDC expression.
Results:
Overall, 900 genes showed significantly higher expression, 644 genes showed lower expression in signet ring cell gastric cancer than in well-differentiated gastric cancers, and there was a large difference in adhesion, vascular development, and cell-to-cell junction components between the 2 subtypes. We performed variant analysis and found 52 variants and 30 cancer driver genes, including NUDC. We analyzed NUDC expression in gastric cancer tissue and its relationship with prognosis. Cox proportional hazard analysis identified T stage, N stage, and NUDC expression as independent risk factors for survival (P < 0.05). The overall survival of the NUDC-positive group was significantly higher (53.2 ± 0.92 months) than that of the NUDC-negative group (44.6 ± 3.7 months) (P = 0.001) in Kaplan-Meier survival analysis.
Conclusion:
We found 30 cancer driver gene candidates and found that the NUDC-positive group showed significantly better survival than the NUDC-negative group via variant analysis.
Journal Article
Human gastric microbiota transplantation recapitulates premalignant lesions in germ-free mice
2022
ObjectiveGastric cancer (GC) is a leading cause of cancer-related mortality. Although microbes besides Helicobacter pylori may also contribute to gastric carcinogenesis, wild-type germ-free (GF) mouse models investigating the role of human gastric microbiota in the process are not yet available. We aimed to evaluate the histopathological features of GF mouse stomachs transplanted with gastric microbiota from patients with different gastric disease states and their relationships with the microbiota.DesignMicrobiota profiles in corpus and antrum tissues and gastric fluid from 12 patients with gastric dysplasia or GC were analysed. Thereafter, biopsied corpus and antrum tissues and gastric fluid from patients (n=15 and n=12, respectively) with chronic superficial gastritis, intestinal metaplasia or GC were inoculated into 42 GF C57BL/6 mice. The gastric microbiota was analysed by amplicon sequencing. Histopathological features of mouse stomachs were analysed immunohistochemically at 1 month after inoculation. An independent set of an additional 15 GF mice was also analysed at 1 year.ResultsThe microbial community structures of patients with dysplasia or GC in the corpus and antrum were similar. The gastric microbiota from patients with intestinal metaplasia or GC selectively colonised the mouse stomachs and induced premalignant lesions: loss of parietal cells and increases in inflammation foci, in F4/80 and Ki-67 expression, and in CD44v9/GSII lectin expression. Marked dysplastic changes were noted at 1 year post inoculation.ConclusionMajor histopathological features of premalignant changes are reproducible in GF mice transplanted with gastric microbiota from patients with intestinal metaplasia or GC. Our results suggest that GF mice are useful for analysing the causality of associations reported in human gastric microbiome studies.
Journal Article
The interferon-inducible protein viperin controls cancer metabolic reprogramming to enhance cancer progression
by
Yoo, Jihye
,
Gu, Youngeun
,
Kim, Jeong Jin
in
1-Phosphatidylinositol 3-kinase
,
AKT protein
,
Animals
2022
Metabolic reprogramming is an important cancer hallmark. However, the mechanisms driving metabolic phenotypes of cancer cells are unclear. Here, we show that the interferon-inducible (IFN-inducible) protein viperin drove metabolic alteration in cancer cells. Viperin expression was observed in various types of cancer and was inversely correlated with the survival rates of patients with gastric, lung, breast, renal, pancreatic, or brain cancer. By generating viperin knockdown or stably expressing cancer cells, we showed that viperin, but not a mutant lacking its iron-sulfur cluster-binding motif, increased lipogenesis and glycolysis via inhibition of fatty acid β-oxidation in cancer cells. In the tumor microenvironment, deficiency of fatty acids and oxygen as well as production of IFNs upregulated viperin expression via the PI3K/AKT/mTOR/HIF-1α and JAK/STAT pathways. Moreover, viperin was primarily expressed in cancer stem-like cells (CSCs) and functioned to promote metabolic reprogramming and enhance CSC properties, thereby facilitating tumor growth in xenograft mouse models. Collectively, our data indicate that viperin-mediated metabolic alteration drives the metabolic phenotype and progression of cancer.
Journal Article
Lysates of a Probiotic, Lactobacillus rhamnosus, Can Improve Skin Barrier Function in a Reconstructed Human Epidermis Model
by
Lee, Eun-Ok
,
Jang, Hye-Won
,
Kim, Jinwook
in
Administration, Topical
,
Antibodies - pharmacology
,
Apoptosis
2019
The main function of the skin is to protect the body from the external environment. The barrier function of the skin is mainly provided by the stratum corneum, which consists of corneocytes bound with the corneodesmosomes and lamellar lipids. Skin barrier proteins like loricrin and filaggrin also contribute to the skin barrier function. In various skin diseases, skin barrier dysfunction is a common symptom, and skin irritants like detergents or surfactants could also perturb skin barrier function. Many efforts have been made to develop strategies to improve skin barrier function. Here, we investigated whether the microfluidized lysates of Lactobacillus rhamnosus (LR), one of the most widely used probiotic species for various health benefits, may improve the skin barrier function in a reconstructed human epidermis, Keraskin™. Application of LR lysate on Keraskin™ increased the expression of tight junction proteins; claudin 1 and occludin as determined by immunofluorescence analysis, and skin barrier proteins; loricrin and filaggrin as determined by immunohistochemistry and immunofluorescence analysis and qPCR. Also, the cytotoxicity of a skin irritant, sodium lauryl sulfate (SLS), was alleviated by the pretreatment of LR lysate. The skin barrier protective effects of LR lysate could be further demonstrated by the attenuation of SLS-enhanced dye-penetration. LR lysate also attenuated the destruction of desmosomes after SLS treatment. Collectively, we demonstrated that LR lysate has protective effects on the skin barrier, which could expand the utility of probiotics to skin-moisturization ingredients.
Journal Article
Single-cell analysis of gastric pre-cancerous and cancer lesions reveals cell lineage diversity and intratumoral heterogeneity
2022
Single-cell transcriptomic profiles analysis has proposed new insights for understanding the behavior of human gastric cancer (GC). GC offers a unique model of intratumoral heterogeneity. However, the specific classes of cells involved in carcinogenetic passage, and the tumor microenvironment of stromal cells was poorly understood. We characterized the heterogeneous cell population of precancerous lesions and gastric cancer at the single-cell resolution by RNA sequencing. We identified 10 gastric cell subtypes and showed the intestinal and diffuse-type cancer were characterized by different cell population. We found that the intestinal and diffuse-type cancer cells have the differential metaplastic cell lineages: intestinal-type cancer cells differentiated along the intestinal metaplasia lineage while diffuse-type cancer cells resemble de novo pathway. We observed an enriched
CCND1
mutation in premalignant disease state and discovered cancer-associated fibroblast cells harboring pro-stemness properties. In particular, tumor cells could be categorized into previously proposed molecular subtypes and harbored specific subtype of malignant cell with high expression level of epithelial-myofibroblast transition which was correlated with poor clinical prognosis. In addition to intratumoral heterogeneity, the analysis revealed different cellular lineages were responsible for potential carcinogenetic pathways. Single-cell transcriptomes analysis of gastric pre-cancerous lesions and cancer may provide insights for understanding GC cell behavior, suggesting potential targets for the diagnosis and treatment of GC.
Journal Article
Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum
2014
Objective The glands of the stomach body and antral mucosa contain a complex compendium of cell lineages. In lower mammals, the distribution of oxyntic glands and antral glands define the anatomical regions within the stomach. We examined in detail the distribution of the full range of cell lineages within the human stomach. Design We determined the distribution of gastric gland cell lineages with specific immunocytochemical markers in entire stomach specimens from three non-obese organ donors. Results The anatomical body and antrum of the human stomach were defined by the presence of ghrelin and gastrin cells, respectively. Concentrations of somatostatin cells were observed in the proximal stomach. Parietal cells were seen in all glands of the body of the stomach as well as in over 50% of antral glands. MIST1 expressing chief cells were predominantly observed in the body although individual glands of the antrum also showed MIST1 expressing chief cells. While classically described antral glands were observed with gastrin cells and deep antral mucous cells without any parietal cells, we also observed a substantial population of mixed type glands containing both parietal cells and G cells throughout the antrum. Conclusions Enteroendocrine cells show distinct patterns of localisation in the human stomach. The existence of antral glands with mixed cell lineages indicates that human antral glands may be functionally chimeric with glands assembled from multiple distinct stem cell populations.
Journal Article