Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
16
result(s) for
"Nambu, Aya"
Sort by:
Glycerol phosphate shuttle enzyme GPD2 regulates macrophage inflammatory responses
by
Jung, Jonathan
,
Doan, Mary T.
,
Shibata, Munehiko
in
631/250/262
,
631/80
,
Acetyl Coenzyme A - biosynthesis
2019
Macrophages are activated during microbial infection to coordinate inflammatory responses and host defense. Here we find that in macrophages activated by bacterial lipopolysaccharide (LPS), mitochondrial glycerol 3-phosphate dehydrogenase (GPD2) regulates glucose oxidation to drive inflammatory responses. GPD2, a component of the glycerol phosphate shuttle, boosts glucose oxidation to fuel the production of acetyl coenzyme A, acetylation of histones and induction of genes encoding inflammatory mediators. While acute exposure to LPS drives macrophage activation, prolonged exposure to LPS triggers tolerance to LPS, where macrophages induce immunosuppression to limit the detrimental effects of sustained inflammation. The shift in the inflammatory response is modulated by GPD2, which coordinates a shutdown of oxidative metabolism; this limits the availability of acetyl coenzyme A for histone acetylation at genes encoding inflammatory mediators and thus contributes to the suppression of inflammatory responses. Therefore, GPD2 and the glycerol phosphate shuttle integrate the extent of microbial stimulation with glucose oxidation to balance the beneficial and detrimental effects of the inflammatory response.
Horng and colleagues show that mitochondrial glycerol-3-phosphate dehydrogenase, a component of the glycerol phosphate shuttle, modulates a shift from inflammation to immunosuppression in activated macrophages.
Journal Article
IL-33 is a crucial amplifier of innate rather than acquired immunity
by
Matsumoto, Kenji
,
Abe, Takaya
,
Saito, Hirohisa
in
Adaptive Immunity
,
Airway management
,
Allergies
2010
IL-33, a member of the IL-1-related cytokines, is considered to be a proallergic cytokine that is especially involved in Th2-type immune responses. Moreover, like IL-1α, IL-33 has been suggested to act as an “alarmin” that amplifies immune responses during tissue injury. In contrast to IL-1, however, the precise roles of IL-33 in those settings are poorly understood. Using IL-1- and IL-33-deficient mice, we found that IL-1, but not IL-33, played a substantial role in induction of T cell-mediated type IV hypersensitivity such as contact and delayed-type hypersensitivity and autoimmune diseases such as experimental autoimmune encephalomyelitis. Most notably, however, IL-33 was important for innate-type mucosal immunity in the lungs and gut. That is, IL-33 was essential for manifestation of T cell-independent protease allergen-induced airway inflammation as well as OVA-induced allergic topical airway inflammation, without affecting acquisition of antigen-specific memory T cells. IL-33 was significantly involved in the development of dextran-induced colitis accompanied by T cell-independent epithelial cell damage, but not in streptozocin-induced diabetes or Con A-induced hepatitis characterized by T cell-mediated apoptotic tissue destruction. In addition, IL-33-deficient mice showed a substantially diminished LPS-induced systemic inflammatory response. These observations indicate that IL-33 is a crucial amplifier of mucosal and systemic innate, rather than acquired, immune responses.
Journal Article
IL-31 is crucial for induction of pruritus, but not inflammation, in contact hypersensitivity
by
Yamaguchi, Sachiko
,
Matsumoto, Kenji
,
Sato, Keiko
in
631/250/127/1213
,
631/250/256/2516
,
Atopic dermatitis
2018
IL-31, which is a member of the IL-6 family of cytokines, is produced mainly by activated CD4
+
T cells, in particular activated Th2 cells, suggesting a contribution to development of type-2 immune responses. IL-31 was reported to be increased in specimens from patients with atopic dermatitis, and IL-31-transgenic mice develop atopic dermatitis-like skin inflammation, which is involved in the pathogenesis of atopic dermatitis. However, the role of IL-31 in development of contact dermatitis/contact hypersensitivity (CHS), which is mediated by hapten-specific T cells, including Th2 cells, is not fully understood. Therefore, we investigated this using IL-31-deficient (
Il31
−/−
) mice, which we newly generated. We demonstrated that the mice showed normal migration and maturation of skin dendritic cells and induction of hapten-specific T cells in the sensitization phase of FITC-induced CHS, and normal induction of local inflammation in the elicitation phase of FITC- and DNFB-induced CHS. On the other hand, those mice showed reduced scratching frequency and duration during FITC- and/or DNFB-induced CHS. Our findings suggest that IL-31 is responsible for pruritus, but not induction of local skin inflammation, during CHS induced by FITC and DNFB.
Journal Article
IL-33, IL-25 and TSLP contribute to development of fungal-associated protease-induced innate-type airway inflammation
2018
Certain proteases derived from house dust mites and plants are considered to trigger initiation of allergic airway inflammation by disrupting tight junctions between epithelial cells. It is known that inhalation of proteases such as house dust mite-derived Der p1 and/or papaya-derived papain caused airway eosinophilia in naïve mice and even in
Rag
-deficient mice that lack acquired immune cells such as T, B and NKT cells. In contrast, little is known regarding the possible involvement of proteases derived from
Aspergillus
species (fungal-associated proteases; FAP), which are ubiquitous saprophytic fungi in the environment, in the development of allergic airway eosinophilia. Here, we found that inhalation of FAP by naïve mice led to airway eosinophilia that was dependent on protease-activated receptor-2 (PAR2), but not TLR2 and TLR4. Those findings suggest that the protease activity of FAP, but not endotoxins in FAP, are important in the setting. In addition, development of that eosinophilia was mediated by innate immune cells (ILCs) such as innate lymphoid cells, but not by acquired immune cells such as T, B and NKT cells. Whereas IL-33, IL-25 and thymic stromal lymphopoietin (TSLP) are involved in induction of FAP-induced ILC-mediated airway eosinophilia, IL-33—rather than IL-25 and/or TSLP—was critical for the eosinophilia in our model. Our findings improve our understanding of the molecular mechanisms involved in induction of airway inflammation by FAP.
Journal Article
IL-33, but Not IL-25, Is Crucial for the Development of House Dust Mite Antigen-Induced Allergic Rhinitis
2013
Both interleukin (IL)-33 and IL-25 induce Th2 cytokine production by various cell types, suggesting that they contribute to development of allergic disorders. However, the precise roles of IL-33 and IL-25 in house dust mite (HDM)-induced allergic rhinitis (AR) remain unclear. Both IL-33 and IL-25 were produced mainly by nasal epithelial cells during HDM-induced AR. Eosinophil and goblet cell counts in the nose and IL-5 levels in lymph node cell culture supernatants were significantly decreased in IL-33-deficient, but not IL-25-deficient, mice compared with wild-type mice during HDM-induced AR, but the serum IgE and IgG1 levels did not differ. On the other hand, HDM-induced AR developed similarly in wild-type mice transferred with either IL-33-deficient BM cells or wild-type BM cells. IL-33, but not IL-25, produced by nasal epithelial cells was crucial for the development of murine HDM-induced AR. These observations suggest that IL-33 neutralization may be a potential approach for treatment of HDM-induced AR in humans.
Journal Article
IL-25 exacerbates autoimmune aortitis in IL-1 receptor antagonist-deficient mice
2019
IL-25, a member of the IL-17 family of cytokines, is known to enhance type 2 immune responses, but suppress type 3 (IL-17A)-mediated immune responses. Mice deficient in IL-1 receptor antagonist (
Il1rn
−/−
mice) have excessive IL-1 signaling, resulting in spontaneous development of IL-1–, TNF– and IL-17A–dependent aortitis. We found that expression of
II25
mRNA was increased in the aortae of
Il1rn
−/−
mice, suggesting that IL-25 may suppress development of IL-1–, TNF– and IL-17A–dependent aortitis in
Il1rn
−/−
mice by inhibiting type 3-mediated immune responses. However, we unexpectedly found that
Il25
−/−
Il1rn
−/−
mice showed attenuated development of aortitis, accompanied by reduced accumulation of inflammatory cells such as dendritic cells, macrophages and neutrophils and reduced mRNA expression of
Il17a
and
Tnfa
—but not
Il4
or
Il13
—in local lesions compared with
Il1rn
−/−
mice. Tissue–, but not immune cell–, derived IL-25 was crucial for development of aortitis. IL-25 enhanced IL-1β and TNF production by IL-25 receptor–expressing dendritic cells and macrophages, respectively, at inflammatory sites of aortae of
Il1rn
−/−
mice, contributing to exacerbation of development of IL-1–, TNF– and IL-17A–dependent aortitis in those mice. Our findings suggest that neutralization of IL-25 may be a potential therapeutic target for aortitis.
Journal Article
Author Correction: Glycerol phosphate shuttle enzyme GPD2 regulates macrophage inflammatory responses
2019
An amendment to this paper has been published and can be accessed via a link at the top of the paper.An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Journal Article
Author Correction: Meikin is a conserved regulator of meiosis-I-specific kinetochore function
2018
An Amendment to this Article has been published and is linked from the HTML version of this paper.
Journal Article
Meikin is a conserved regulator of meiosis-I-specific kinetochore function
2015
The kinetochore is the crucial apparatus regulating chromosome segregation in mitosis and meiosis. Particularly in meiosis I, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation) and centromeric cohesion mediated by cohesin is protected in the following anaphase. Although meiotic kinetochore factors have been identified only in budding and fission yeasts, these molecules and their functions are thought to have diverged earlier. Therefore, a conserved mechanism for meiotic kinetochore regulation remains elusive. Here we have identified in mouse a meiosis-specific kinetochore factor that we termed MEIKIN, which functions in meiosis I but not in meiosis II or mitosis. MEIKIN plays a crucial role in both mono-orientation and centromeric cohesion protection, partly by stabilizing the localization of the cohesin protector shugoshin. These functions are mediated mainly by the activity of Polo-like kinase PLK1, which is enriched to kinetochores in a MEIKIN-dependent manner. Our integrative analysis indicates that the long-awaited key regulator of meiotic kinetochore function is Meikin, which is conserved from yeasts to humans.
The long elusive mammalian meiosis-specific kinetochore factor has been identified in mice; MEIKIN—which plays an equivalent role to the yeast proteins Spo13 and Moa1—ensures mono-orientation, protects sister chromatid cohesion and recruits the kinase PLK1 to the kinetochores.
Meikin proteins regulate chromosome segregation
During the first of the meiotic cell divisions that generate germ cells, sister kinetochores are captured by microtubules from the same spindle pole so that sister chromatids can be segregated into the same daughter cell. Yoshinori Watanabe and colleagues have now identified MEIKIN as the long-sought-after meiosis-specific kinetochore factor that ensures mono-orientation and protects sister chromatid cohesion during the first meiotic division in mouse germ cells. It functions mainly by recruiting the kinase PLK1 to kinetochores. Previously identified budding and fission yeast proteins, Spo13 and Moa1, respectively, are shown to be functional homologues of MEIKIN, and the authors propose that together they form the 'Meikin' family of meiosis-I-specific kinetochore factors.
Journal Article
The roles of IL-17C in T cell-dependent and -independent inflammatory diseases
2018
IL-17C, which is a member of the IL-17 family of cytokines, is preferentially produced by epithelial cells in the lung, skin and colon, suggesting that IL-17C may be involved in not only host defense but also inflammatory diseases in those tissues. In support of that, IL-17C was demonstrated to contribute to development of T cell-dependent imiquimod-induced psoriatic dermatitis and T cell-independent dextran sodium sulfate-induced acute colitis using mice deficient in IL-17C and/or IL-17RE, which is a component of the receptor for IL-17C. However, the roles of IL-17C in other inflammatory diseases remain poorly understood. Therefore, we investigated the contributions of IL-17C to development of certain disease models using
Il17c
−/−
mice, which we newly generated. Those mice showed normal development of T cell-dependent inflammatory diseases such as FITC- and DNFB-induced contact dermatitis/contact hypersensitivity (CHS) and concanavalin A-induced hepatitis, and T cell-independent inflammatory diseases such as bleomycin-induced pulmonary fibrosis, papain-induced airway eosinophilia and LPS-induced airway neutrophilia. On the other hand, those mice were highly resistant to LPS-induced endotoxin shock, indicating that IL-17C is crucial for protection against that immunological reaction. Therefore, IL-17C neutralization may represent a novel therapeutic approach for sepsis, in addition to psoriasis and acute colitis.
Journal Article