Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
155 result(s) for "Naples, D"
Sort by:
Methods to determine neutrino flux at low energies
We investigate the “low- ν ” method (developed by the CCFR/NUTEV collaborations) to determine the neutrino flux in a wide band neutrino beam at very low energies, a region of interest to neutrino oscillations experiments. Events with low hadronic final state energy (of 1, 2 and 5 GeV) were used by the MINOS collaboration to determine the neutrino flux in their measurements of neutrino ( ν μ ) and antineutrino ( ) total cross sections. The lowest ν μ energy for which the method was used in MINOS is 3.5 GeV, and the lowest energy is 6 GeV. At these energies, the cross sections are dominated by inelastic processes. We investigate the application of the method to determine the neutrino flux for ν μ , energies as low as 0.7 GeV where the cross sections are dominated by quasielastic scattering and Δ (1232) resonance production. We find that the method can be extended to low energies by using values of 0.25 and 0.50 GeV, which are feasible in fully active neutrino detectors such as MINERvA.
Methods to determine neutrino flux at low energies: investigation of the low v method
We investigate the \"low-v\" method (developed by the CCFR/NUTEV collaborations) to determine the neutrino flux in a wide band neutrino beam at very low energies, a region of interest to neutrino oscillations experiments. Events with low hadronic final state energy v < [v.sub.cut] (of 1, 2 and 5 GeV) were used by the MINOS collaboration to determine the neutrino flux in their measurements of neutrino ([v.sub.μ]) and antineutrino ([[bar.v].sub.μ]) total cross sections. The lowest energy for which the method was used in MINOS is 3.5 GeV, and the lowest [[bar.v].sub.μ] energy is 6 GeV. At these energies, the cross sections are dominated by inelastic processes. We investigate the application of the method to determine the neutrino flux for [v.sub.μ], [[bar.v].sub.μ], energies as low as 0.7 GeV where the cross sections are dominated by quasielastic scattering and Δ(1232) resonance production. We find that the method can be extended to low energies by using cut values of 0.25 and 0.50 GeV, which are feasible in fully active neutrino detectors such as MINERvA.
The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector
The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.
ICARUS at the Fermilab Short-Baseline Neutrino program: initial operation
The ICARUS collaboration employed the 760-ton T600 detector in a successful 3-year physics run at the underground LNGS laboratory, performing a sensitive search for LSND-like anomalous ν e appearance in the CERN Neutrino to Gran Sasso beam, which contributed to the constraints on the allowed neutrino oscillation parameters to a narrow region around 1 eV 2 . After a significant overhaul at CERN, the T600 detector has been installed at Fermilab. In 2020 the cryogenic commissioning began with detector cool down, liquid argon filling and recirculation. ICARUS then started its operations collecting the first neutrino events from the booster neutrino beam (BNB) and the Neutrinos at the Main Injector (NuMI) beam off-axis, which were used to test the ICARUS event selection, reconstruction and analysis algorithms. ICARUS successfully completed its commissioning phase in June 2022. The first goal of the ICARUS data taking will be a study to either confirm or refute the claim by Neutrino-4 short-baseline reactor experiment. ICARUS will also perform measurement of neutrino cross sections with the NuMI beam and several Beyond Standard Model searches. After the first year of operations, ICARUS will search for evidence of sterile neutrinos jointly with the Short-Baseline Near Detector, within the Short-Baseline Neutrino program. In this paper, the main activities carried out during the overhauling and installation phases are highlighted. Preliminary technical results from the ICARUS commissioning data with the BNB and NuMI beams are presented both in terms of performance of all ICARUS subsystems and of capability to select and reconstruct neutrino events.
Novel approach for evaluating detector-related uncertainties in a LArTPC using MicroBooNE data
Primary challenges for current and future precision neutrino experiments using liquid argon time projection chambers (LArTPCs) include understanding detector effects and quantifying the associated systematic uncertainties. This paper presents a novel technique for assessing and propagating LArTPC detector-related systematic uncertainties. The technique makes modifications to simulation waveforms based on a parameterization of observed differences in ionization signals from the TPC between data and simulation, while remaining insensitive to the details of the detector model. The modifications are then used to quantify the systematic differences in low- and high-level reconstructed quantities. This approach could be applied to future LArTPC detectors, such as those used in SBN and DUNE.
Adjusting neutrino interaction models and evaluating uncertainties using NOvA near detector data
The two-detector design of the NOvA neutrino oscillation experiment, in which two functionally identical detectors are exposed to an intense neutrino beam, aids in canceling leading order effects of cross-section uncertainties. However, limited knowledge of neutrino interaction cross sections still gives rise to some of the largest systematic uncertainties in current oscillation measurements. We show contemporary models of neutrino interactions to be discrepant with data from NOvA, consistent with discrepancies seen in other experiments. Adjustments to neutrino interaction models in GENIE are presented, creating an effective model that improves agreement with our data. We also describe systematic uncertainties on these models, including uncertainties on multi-nucleon interactions from a newly developed procedure using NOvA near detector data.
Calorimetric classification of track-like signatures in liquid argon TPCs using MicroBooNE data
A bstract The MicroBooNE liquid argon time projection chamber located at Fermilab is a neutrino experiment dedicated to the study of short-baseline oscillations, the measurements of neutrino cross sections in liquid argon, and to the research and development of this novel detector technology. Accurate and precise measurements of calorimetry are essential to the event reconstruction and are achieved by leveraging the TPC to measure deposited energy per unit length along the particle trajectory, with mm resolution. We describe the non-uniform calorimetric reconstruction performance in the detector, showing dependence on the angle of the particle trajectory. Such non-uniform reconstruction directly affects the performance of the particle identification algorithms which infer particle type from calorimetric measurements. This work presents a new particle identification method which accounts for and effectively addresses such non-uniformity. The newly developed method shows improved performance compared to previous algorithms, illustrated by a 93.7% proton selection efficiency and a 10% muon mis-identification rate, with a fairly loose selection of tracks performed on beam data. The performance is further demonstrated by identifying exclusive final states in ν μ CC interactions. While developed using MicroBooNE data and simulation, this method is easily applicable to future LArTPC experiments, such as SBND, ICARUS, and DUNE.
Demonstration of neutron identification in neutrino interactions in the MicroBooNE liquid argon time projection chamber
A significant challenge in measurements of neutrino oscillations is reconstructing the incoming neutrino energies. While modern fully-active tracking calorimeters such as liquid argon time projection chambers in principle allow the measurement of all final state particles above some detection threshold, undetected neutrons remain a considerable source of missing energy with little to no data constraining their production rates and kinematics. We present the first demonstration of tagging neutrino-induced neutrons in liquid argon time projection chambers using secondary protons emitted from neutron-argon interactions in the MicroBooNE detector. We describe the method developed to identify neutrino-induced neutrons and demonstrate its performance using neutrons produced in muon-neutrino charged current interactions. The method is validated using a small subset of MicroBooNE’s total dataset. The selection yields a sample with 60 % of selected tracks corresponding to neutron-induced secondary protons. At this purity, the integrated efficiency is 8.4% for neutrons that produce a detectable proton.
Rejecting cosmic background for exclusive charged current quasi elastic neutrino interaction studies with Liquid Argon TPCs; a case study with the MicroBooNE detector
Cosmic ray (CR) interactions can be a challenging source of background for neutrino oscillation and cross-section measurements in surface detectors. We present methods for CR rejection in measurements of charged-current quasielastic-like (CCQE-like) neutrino interactions, with a muon and a proton in the final state, measured using liquid argon time projection chambers (LArTPCs). Using a sample of cosmic data collected with the MicroBooNE detector, mixed with simulated neutrino scattering events, a set of event selection criteria is developed that produces an event sample with minimal contribution from CR background. Depending on the selection criteria used a purity between 50 and 80% can be achieved with a signal selection efficiency between 50 and 25%, with higher purity coming at the expense of lower efficiency. While using a specific dataset and selection criteria values optimized for the MicroBooNE detector, the concepts presented here are generic and can be adapted for various studies of exclusive \\[\\nu _{\\mu }\\] CCQE interactions in LArTPCs.
A precision measurement of electroweak parameters in neutrino-nucleon scattering
The CCFR collaboration reports a precise measurement of electroweak parameters derived from the ratio of neutral-current to charged-current cross-sections in neutrino-nucleon scattering at the Fermilab Tevatron. We determine for GeV, GeV. This is equivalent to GeV. The good agreement of this measurement with Standard Model expectations implies the exclusion of additional contact interactions at 95% confidence at a mass scale of 1-8 TeV, depending on the form of the contact interaction.