Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
52 result(s) for "Naselaris, Thomas"
Sort by:
Brain-optimized deep neural network models of human visual areas learn non-hierarchical representations
Deep neural networks (DNNs) optimized for visual tasks learn representations that align layer depth with the hierarchy of visual areas in the primate brain. One interpretation of this finding is that hierarchical representations are necessary to accurately predict brain activity in the primate visual system. To test this interpretation, we optimized DNNs to directly predict brain activity measured with fMRI in human visual areas V1-V4. We trained a single-branch DNN to predict activity in all four visual areas jointly, and a multi-branch DNN to predict each visual area independently. Although it was possible for the multi-branch DNN to learn hierarchical representations, only the single-branch DNN did so. This result shows that hierarchical representations are not necessary to accurately predict human brain activity in V1-V4, and that DNNs that encode brain-like visual representations may differ widely in their architecture, ranging from strict serial hierarchies to multiple independent branches. Whether or not deep neural networks require hierarchical representations to predict brain activity is not known. Here, the authors show that a multi-branch deep neural network can predict neural activity independently in visual areas in the absence of hierarchical representations.
Variation in the geometry of concept manifolds across human visual cortex
Brain activity patterns in high-level visual cortex support accurate linear classification of visual concepts (e.g., objects or scenes). It has long been appreciated that the accuracy of linear classification in any brain area depends on the geometry of its concept manifolds—sets of brain activity patterns that encode images of a concept. However, it is unclear how the geometry of concept manifolds differs between regions of visual cortex that support accurate classification and those that don’t, or how it differs between visual cortex and deep neural networks (DNNs). We estimated geometric properties of concept manifolds that, per a recent theory, directly determine the accuracy of simple “few-shot” linear classifiers. Using a large fMRI dataset, we show that variation in classification accuracy across human visual cortex is driven by a variation in a single geometric property: the distance between manifold centers (“geometric Signal”). In contrast, variation in classification accuracy across early and mid DNN layers is driven by an increase in the effective number of manifold dimensions (“Dimensionality”). Despite this difference in the geometric properties that affect few-shot classification performance in the brain and DNNs, we find that Signal and Dimensionality are strongly, negatively correlated: when Signal increases across brain regions or DNN layers, Dimensionality decreases, and vice versa. We conclude that early visual cortical areas and DNN layers deploy different geometric strategies for accurate linear classification of concepts, even though both are subject to the same constraint.
Stacked regressions and structured variance partitioning for interpretable brain maps
Relating brain activity associated with a complex stimulus to different properties of that stimulus is a powerful approach for constructing functional brain maps. However, when stimuli are naturalistic, their properties are often correlated (e.g., visual and semantic features of natural images, or different layers of a convolutional neural network that are used as features of images). Correlated properties can act as confounders for each other and complicate the interpretability of brain maps, and can impact the robustness of statistical estimators. Here, we present an approach for brain mapping based on two proposed methods: stacking different encoding models and structured variance partitioning. Our stacking algorithm combines encoding models that each uses as input a feature space that describes a different stimulus attribute. The algorithm learns to predict the activity of a voxel as a linear combination of the outputs of different encoding models. We show that the resulting combined model can predict held-out brain activity better or at least as well as the individual encoding models. Further, the weights of the linear combination are readily interpretable; they show the importance of each feature space for predicting a voxel. We then build on our stacking models to introduce structured variance partitioning, a new type of variance partitioning that takes into account the known relationships between features. Our approach constrains the size of the hypothesis space and allows us to ask targeted questions about the similarity between feature spaces and brain regions even in the presence of correlations between the feature spaces. We validate our approach in simulation, showcase its brain mapping potential on fMRI data, and release a Python package. Our methods can be useful for researchers interested in aligning brain activity with different layers of a neural network, or with other types of correlated feature spaces. [Display omitted] •Naturalistic stimuli have correlated features that can lead to confounding.•Our first method estimates encoding models reliably using multiple feature spaces.•Our second method factors in feature dependence to create interpretable brain maps.•We test our approach in simulation and using a large-scale fMRI dataset.•We provide a GitHub repository: https://github.com/brainML/Stacking.
A voxel-wise encoding model for early visual areas decodes mental images of remembered scenes
Recent multi-voxel pattern classification (MVPC) studies have shown that in early visual cortex patterns of brain activity generated during mental imagery are similar to patterns of activity generated during perception. This finding implies that low-level visual features (e.g., space, spatial frequency, and orientation) are encoded during mental imagery. However, the specific hypothesis that low-level visual features are encoded during mental imagery is difficult to directly test using MVPC. The difficulty is especially acute when considering the representation of complex, multi-object scenes that can evoke multiple sources of variation that are distinct from low-level visual features. Therefore, we used a voxel-wise modeling and decoding approach to directly test the hypothesis that low-level visual features are encoded in activity generated during mental imagery of complex scenes. Using fMRI measurements of cortical activity evoked by viewing photographs, we constructed voxel-wise encoding models of tuning to low-level visual features. We also measured activity as subjects imagined previously memorized works of art. We then used the encoding models to determine if putative low-level visual features encoded in this activity could pick out the imagined artwork from among thousands of other randomly selected images. We show that mental images can be accurately identified in this way; moreover, mental image identification accuracy depends upon the degree of tuning to low-level visual features in the voxels selected for decoding. These results directly confirm the hypothesis that low-level visual features are encoded during mental imagery of complex scenes. Our work also points to novel forms of brain–machine interaction: we provide a proof-of-concept demonstration of an internet image search guided by mental imagery. •A model of representation in early visual cortex decodes mental images of complex scenes.•Mental imagery depends directly upon the encoding of low-level visual features.•Low-level visual features of mental images are encoded by activity in early visual cortex.•Depictive theories of mental imagery are strongly supported by our results.•Brain activity evoked by mental imagery can be used to guide internet image search.
Voxel-to-voxel predictive models reveal unexpected structure in unexplained variance
Encoding models based on deep convolutional neural networks (DCNN) predict BOLD responses to natural scenes in the human visual system more accurately than many other currently available models. However, DCNN-based encoding models fail to predict a significant amount of variance in the activity of most voxels in all visual areas. This failure could reflect limitations in the data (e.g., a noise ceiling), or could reflect limitations of the DCNN as a model of computation in the brain. Understanding the source and structure of the unexplained variance could therefore provide helpful clues for improving models of brain computation. Here, we characterize the structure of the variance that DCNN-based encoding models cannot explain. Using a publicly available dataset of BOLD responses to natural scenes, we determined if the source of unexplained variance was shared across voxels, individual brains, retinotopic locations, and hierarchically distant visual brain areas. We answered these questions using voxel-to-voxel (vox2vox) models that predict activity in a target voxel given activity in a population of source voxels. We found that simple linear vox2vox models increased within-subject prediction accuracy over DCNN-based models for any pair of source/target visual areas, clearly demonstrating that the source of unexplained variance is widely shared within and across visual brain areas. However, vox2vox models were not more accurate than DCNN-based encoding models when source and target voxels came from different brains, demonstrating that the source of unexplained variance was not shared across brains. Importantly, control analyses demonstrated that the source of unexplained variance was not encoded in the mean activity of source voxels, or the activity of voxels in white matter. Interestingly, the weights of vox2vox models revealed preferential connection of target voxel activity to source voxels with adjacent receptive fields, even when source and target voxels were in different functional brain areas. Finally, we found that the prediction accuracy of the vox2vox models decayed with hierarchical distance between the source and target voxels but showed detailed patterns of dependence on hierarchical relationships that we did not observe in DCNNs. Given these results, we argue that the structured variance unexplained by DCNN-based encoding models is unlikely to be entirely caused by non-neural artifacts (e.g., spatially correlated measurement noise) or a failure of DCNNs to approximate the features encoded in brain activity; rather, our results point to a need for brain models that provide both mechanistic and computational explanations for structured ongoing activity in the brain. Keywords: fMRI, encoding models, deep neural networks, functional connectivity
Disentangling signal and noise in neural responses through generative modeling
Measurements of neural responses to identically repeated experimental events often exhibit large amounts of variability. This noise is distinct from signal , operationally defined as the average expected response across repeated trials for each given event. Accurately distinguishing signal from noise is important, as each is a target that is worthy of study (many believe noise reflects important aspects of brain function) and it is important not to confuse one for the other. Here, we describe a principled modeling approach in which response measurements are explicitly modeled as the sum of samples from multivariate signal and noise distributions. In our proposed method—termed Generative Modeling of Signal and Noise (GSN)—the signal distribution is estimated by subtracting the estimated noise distribution from the estimated data distribution. Importantly, GSN improves estimates of the signal distribution, but does not provide improved estimates of responses to individual events. We validate GSN using ground-truth simulations and show that it compares favorably with related methods. We also demonstrate the application of GSN to empirical fMRI data to illustrate a simple consequence of GSN: by disentangling signal and noise components in neural responses, GSN denoises principal components analysis and improves estimates of dimensionality. We end by discussing other situations that may benefit from GSN’s characterization of signal and noise, such as estimation of noise ceilings for computational models of neural activity. A code toolbox for GSN is provided with both MATLAB and Python implementations.
NeuroGen: Activation optimized image synthesis for discovery neuroscience
•We propose a state-of-the-art generative framework, called NeuroGen, which allows synthesis of images that are optimized to achieve specific, predetermined brain activation responses in the human brain.•We apply this framework as a discovery architecture to amplify differences in regional and individual brain response patterns to visual stimuli, which we then verify using several thousand observed image responses measured with fMRI.•We demonstrated that NeuroGen has the capacity of generating images predicted to achieve activation levels that are more extreme than the predicted activations of the best natural images.•NeuroGen extends the utility of brain encoding models and opens up a new avenue for exploring, and possibly precisely controlling, the human visual system. Functional MRI (fMRI) is a powerful technique that has allowed us to characterize visual cortex responses to stimuli, yet such experiments are by nature constructed based on a priori hypotheses, limited to the set of images presented to the individual while they are in the scanner, are subject to noise in the observed brain responses, and may vary widely across individuals. In this work, we propose a novel computational strategy, which we call NeuroGen, to overcome these limitations and develop a powerful tool for human vision neuroscience discovery. NeuroGen combines an fMRI-trained neural encoding model of human vision with a deep generative network to synthesize images predicted to achieve a target pattern of macro-scale brain activation. We demonstrate that the reduction of noise that the encoding model provides, coupled with the generative network’s ability to produce images of high fidelity, results in a robust discovery architecture for visual neuroscience. By using only a small number of synthetic images created by NeuroGen, we demonstrate that we can detect and amplify differences in regional and individual human brain response patterns to visual stimuli. We then verify that these discoveries are reflected in the several thousand observed image responses measured with fMRI. We further demonstrate that NeuroGen can create synthetic images predicted to achieve regional response patterns not achievable by the best-matching natural images. The NeuroGen framework extends the utility of brain encoding models and opens up a new avenue for exploring, and possibly precisely controlling, the human visual system.
Re-expression of CA1 and entorhinal activity patterns preserves temporal context memory at long timescales
Converging, cross-species evidence indicates that memory for time is supported by hippocampal area CA1 and entorhinal cortex. However, limited evidence characterizes how these regions preserve temporal memories over long timescales (e.g., months). At long timescales, memoranda may be encountered in multiple temporal contexts, potentially creating interference. Here, using 7T fMRI, we measured CA1 and entorhinal activity patterns as human participants viewed thousands of natural scene images distributed, and repeated, across many months. We show that memory for an image’s original temporal context was predicted by the degree to which CA1/entorhinal activity patterns from the first encounter with an image were re-expressed during re-encounters occurring minutes to months later. Critically, temporal memory signals were dissociable from predictors of recognition confidence, which were carried by distinct medial temporal lobe expressions. These findings suggest that CA1 and entorhinal cortex preserve temporal memories across long timescales by coding for and reinstating temporal context information. How hippocampal area CA1 and the entorhinal cortex preserve temporal memories over long timescales is not known. Here, the authors show using 7T fMRI, that temporal context memory for scene images is predicted by the re-expression of CA1 and entorhinal cortex activity patterns during subsequent encounters over a period of months.
Modulation of Spectral Representation and Connectivity Patterns in Response to Visual Narrative in the Human Brain
The regional brain networks and the underlying neurophysiological mechanisms subserving the cognition of visual narrative in humans have largely been studied with non-invasive brain recording. In this study, we specifically investigated how regional and cross-regional cortical activities support visual narrative interpretation using intracranial stereotactic EEG (sEEG) recordings from thirteen human subjects (6 females, and 7 males). Widely distributed recording sites across the brain were sampled while subjects were explicitly instructed to observe images from fables presented in “sequential” order, and a set of images drawn from multiple fables presented in “scrambled” order. Broadband activity mainly within the frontal and temporal lobes were found to encode if a presented image is part of visual narrative (sequential) or random image set (scrambled). Moreover, the temporal lobe exhibits strong activation in response to visual narrative while the frontal lobe is more engaged when contextually novel stimuli are presented. We also investigated the dynamics of interregional interactions between visual narrative and contextually novel series of images. Interestingly, the interregional connectivity is also altered between sequential and scrambled sequences. Together, these results suggest that both changes in regional neuronal activity and cross-regional interactions subserve visual narrative and contextual novelty processing.
The feature-weighted receptive field: an interpretable encoding model for complex feature spaces
We introduce the feature-weighted receptive field (fwRF), an encoding model designed to balance expressiveness, interpretability and scalability. The fwRF is organized around the notion of a feature map—a transformation of visual stimuli into visual features that preserves the topology of visual space (but not necessarily the native resolution of the stimulus). The key assumption of the fwRF model is that activity in each voxel encodes variation in a spatially localized region across multiple feature maps. This region is fixed for all feature maps; however, the contribution of each feature map to voxel activity is weighted. Thus, the model has two separable sets of parameters: “where” parameters that characterize the location and extent of pooling over visual features, and “what” parameters that characterize tuning to visual features. The “where” parameters are analogous to classical receptive fields, while “what” parameters are analogous to classical tuning functions. By treating these as separable parameters, the fwRF model complexity is independent of the resolution of the underlying feature maps. This makes it possible to estimate models with thousands of high-resolution feature maps from relatively small amounts of data. Once a fwRF model has been estimated from data, spatial pooling and feature tuning can be read-off directly with no (or very little) additional post-processing or in-silico experimentation. We describe an optimization algorithm for estimating fwRF models from data acquired during standard visual neuroimaging experiments. We then demonstrate the model’s application to two distinct sets of features: Gabor wavelets and features supplied by a deep convolutional neural network. We show that when Gabor feature maps are used, the fwRF model recovers receptive fields and spatial frequency tuning functions consistent with known organizational principles of the visual cortex. We also show that a fwRF model can be used to regress entire deep convolutional networks against brain activity. The ability to use whole networks in a single encoding model yields state-of-the-art prediction accuracy. Our results suggest a wide variety of uses for the feature-weighted receptive field model, from retinotopic mapping with natural scenes, to regressing the activities of whole deep neural networks onto measured brain activity. •We introduce a new encoding model: the feature-weighted receptive field (fwRF).•A voxel activity encodes one visual field region across many feature maps.•The fwRF model recovers voxel receptive field-like properties and tuning functions.•Our method allows us to regress whole deep neural networks on brain activity.•We obtain state-of-the-art prediction accuracy for voxels in the visual system.