Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
42
result(s) for
"Nasrul Arahman"
Sort by:
Two-Step Dopamine-to-Polydopamine Modification of Polyethersulfone Ultrafiltration Membrane for Enhancing Anti-Fouling and Ultraviolet Resistant Properties
by
Yuliar Firdaus
,
Noorfidza Yub Harun
,
Nasrul Arahman
in
anti-fouling
,
anti-ultraviolet
,
Antifouling
2020
Polydopamine has been widely used as an additive to enhance membrane fouling resistance. This study reports the effects of two-step dopamine-to-polydopamine modification on the permeation, antifouling, and potential anti-UV properties of polyethersulfone (PES)-based ultrafiltration membranes. The modification was performed through a two-step mechanism: adding the dopamine additive followed by immersion into Tris-HCl solution to allow polymerization of dopamine into polydopamine (PDA). The results reveal that the step of treatment, the concentration of dopamine in the first step, and the duration of dipping in the Tris solution in the second step affect the properties of the resulting membranes. Higher dopamine loadings improve the pure water flux (PWF) by more than threefold (15 vs. 50 L/m2·h). The extended dipping period in the Tris alkaline buffer leads to an overgrowth of the PDA layer that partly covers the surface pores which lowers the PWF. The presence of dopamine or polydopamine enhances the hydrophilicity due to the enrichment of hydrophilic catechol moieties which leads to better anti-fouling. Moreover, the polydopamine film also improves the membrane resistance to UV irradiation by minimizing photodegradation’s occurrence.
Journal Article
Mn3O4 Catalysts for Advanced Oxidation of Phenolic Contaminants in Aqueous Solutions
by
Muhammad, Syaifullah
,
Nugraha, Muhammad Wahyu
,
Arahman, Nasrul
in
Aqueous solutions
,
catalysts
,
Catalytic oxidation
2022
Water-soluble organic pollutants, such as phenolic compounds, have been exposed to environments globally. They have a significant impact on groundwater and surface water quality. In this work, different Mn3O4 catalysts were prepared for metal oxide activation of peroxymonosulfate (PMS) to remove the phenolic compound from the water environment. The as-prepared catalysts were characterized using thermogravimetric-differential thermal analysis (TG-DTA), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. Furthermore, the effect of temperature and reusability of the as-prepared Mn3O4 catalysts is also investigated. The Mn3O4 nanoparticles (NPs) catalyst reveals an excellent performance for activating PMS to remove phenol compounds. Mn3O4 NPs exhibits 96.057% efficiency in removing 25 ppm within 60 min. The kinetic analysis shows that Mn3O4 NPs fitted into pseudo-first order kinetic model and exhibited relatively low energy activation of 42.6 kJ/mol. The reusability test of Mn3O4 NPs displays exceptional stability with 84.29% efficiency after three-sequential cycles. The as-prepared Mn3O4 NPs is proven suitable for phenolic remediation in aqueous solutions.
Journal Article
Functionalization of PEG-AgNPs Hybrid Material to Alleviate Biofouling Tendency of Polyethersulfone Membrane
2022
Membrane-based processes are a promising technology in water and wastewater treatments, to supply clean and secure water. However, during membrane filtration, biofouling phenomena severely hamper the performance, leading to permanent detrimental impacts. Moreover, regular chemical cleaning is ineffective in the long-run for overcoming biofouling, because it weakens the membrane structure. Therefore, the development of a membrane material with superior anti-biofouling performance is seen as an attractive option. Hydrophilic-anti-bacterial precursor polyethylene glycol-silver nanoparticles (PEG-AgNPs) were synthesized in this study, using a sol-gel method, to mitigate biofouling on the polyethersulfone (PES) membrane surface. The functionalization of the PEG-AgNP hybrid material on a PES membrane was achieved through a simple blending technique. The PES/PEG-AgNP membrane was manufactured via the non-solvent induced phase separation method. The anti-biofouling performance was experimentally measured as the flux recovery ratio (FRR) of the prepared membrane, before and after incubation in E. coli culture for 48 h. Nanomaterial characterization confirmed that the PEG-AgNPs had hydrophilic-anti-bacterial properties. The substantial improvements in membrane performance after adding PEG-AgNPs were evaluated in terms of the water flux and FRR after the membranes experienced biofouling. The results showed that the PEG-AgNPs significantly increased the water flux of the PES membrane, from 2.87 L·m−2·h−1 to 172.84 L·m−2·h−1. The anti-biofouling performance of the PES pristine membrane used as a benchmark showed only 1% FRR, due to severe biofouling. In contrast, the incorporation of PEG-AgNPs in the PES membrane decreased live bacteria by 98%. It enhanced the FRR of anti-biofouling up to 79%, higher than the PES/PEG and PES/Ag membranes.
Journal Article
Mapping of Fault and Hydrothermal System beneath the Seulawah Volcano Inferred from a Magnetotellurics Structure
by
Idroes, Rinaldi
,
Gunawan, Poernomo
,
Yanis, Muhammad
in
Alternative energy sources
,
Fault lines
,
Geology
2021
Magnetotellurics (MT) is an important geophysical method for exploring geothermal systems, with the Earth resistivity obtained from the MT method proving to be useful for the hydrothermal imaging changes of the system. In this research, we applied the MT method to map the geothermal system of the Seulawah Agam volcano in northern Sumatra, a site intended for the construction of a geothermal power plant with an estimated energy of 230 Mwe. Herein, 3D MT measurements were carried out, covering the entire area of the volcano and the various intersecting local faults from the Seulimeum segment in the NW–SE direction. Based on Occam 2D inversion, a conductive anomaly (<10 ohm·m) near the surface was identified in response to specific manifestation areas, including the Heutsz crater on the northern side and the Cempaga crater on the southern side. A further conductive anomaly was also found at a depth of 1 km, which was presumably due to a clay cap layer covering the fluid in the reservoir layer below the surface, where the manifestation areas are formed at various locations (where faults and fractures are found) owing to the fluid in the reservoir rising to the surface. The MT modeling also revealed that the reservoir layer in Seulawah Agam lies at a depth of 2 km with a higher resistivity of 40–150 ohm·m, which is the main target of geothermal energy exploration. At the same time, the heat source zone where magma is located was estimated to lie in two locations, namely, on the northern side centering on the Heutsz crater area and the southern side in the Cempaga crater area. A clear 3D structure obtained via Occam inversion was also used to visualize the hydrothermal flow in the Seulawah Agam volcano that originates from two heat source zones, where one structure that was consistent across all models is the conductive zone that reaches a depth of 5 km in the south in response to the regional faulting of the Seulimeum segment. Based on the MT research, we concluded that the volcano has the geothermal potential to be tapped into power plant energy in the future.
Journal Article
The performance of bovine serum albumin filtration by using polyethersulfone-Tetronic 304 blend Ultrafiltration Membrane version 2; peer review: 2 approved
by
Razi, Fachrul
,
Mulyati, Sri
,
Arahman, Nasrul
in
Bovine serum albumin
,
Cardiovascular disease
,
Contact angle
2019
Background: Membrane technology has been widely applied for protein purification. In applications for protein separation, a membrane with stable filtration performance is necessary. In this work, two types of hollow fiber membranes with different characteristic were used to study the filtration profile of bovine serum albumin.
Methods: A single piece of hollow fiber module was used for ultrafiltration testing using UF0 and UFT304 membranes. Flux and rejection of BSA solution were collected based on a pressure-driven inside filtration model.
Results: Ultrafiltration experiments showed that the flux of UFT304 membrane was higher than that of UF0 membrane in all applied pressure condition. Solute rejection reaches 90 and 88% for ultrafiltration of BSA solution on the operating pressure of 0.5 atm using UF0 and UFT304 membranes, respectively.
Conclusion: In general, UFT304 membranes has better ultrafiltration performance for BSA separation than UF0 membranes. The UFT304 membrane has a more stable flux for up to two hours of filtration.
Journal Article
Hydrophilic Antimicrobial Polyethersulfone Membrane for Removal of Turbidity of Well-Water
by
Halimah, Nur
,
Bilad, Muhammad Roil
,
Jakfar, Jakfar
in
Additives
,
Cellulose acetate
,
Chemical contaminants
2022
Membrane-based technologies have been widely used for surface water treatment. Yet, many aspects of this technology can still be improved. This study aims to develop polyethersulfone (PES)-based phase-inverted membranes to improve the morphological structure, antimicrobial properties, and performance by incorporating Poloxamer 188 and patchouli oil as the dope solution additives. The performance of the membrane was assessed for filtration of well water and by evaluating the turbidity rejection. This study used a phase inversion technique in the membrane manufacturing process with PES, PES + P188 + 1 wt% PO, PES + P188 + 3 wt% PO, and PES + P188 + 7 wt% PO. The characteristics of the obtained membranes were studied in terms of structure and morphology, microbial growth prevention, hydrophilicity, filtration flux, and ability to reduce the turbidity of well water samples. Results show that the addition of Poloxamer 188 and patchouli oil in the dope solution turned the membrane more porous (up to 73.24% increase in porosity) and more hydrophilic (the water contact angle (WCA) was lowered from 70 to 37°). The additives also increased the antibacterial properties of the membrane, as shown by up to 97.5% reducing Escherichia coli colonies on the membrane surface. Overall, the results demonstrate significant improvements in the characteristics and performance of PES membranes by incorporating Poloxamer 188 co-polymer and patchouli oil as additives in the dope solution. The modified membrane was successfully applied to remove turbidity from a water sample. The turbidity parameters in well water samples could be fully reduced in nine out of ten samples by the membrane containing 7 wt% PO additives.
Journal Article
Development of Polyvinylidene Fluoride Membrane by Incorporating Bio-Based Ginger Extract as Additive
2020
Biofouling on the membrane surface leads to performance deficiencies in membrane filtration. In this study, the application of ginger extract as a bio-based additive to enhance membrane antibiofouling properties was investigated. The extract was dispersed in a dimethyl acetamide (DMAc) solvent together with polyvinylidene fluoride (PVDF) to enhance biofouling resistance of the resulting membrane due to its antibiotic property. The concentrations of the ginger extract in the dope solution were varied in the range of 0–0.1 wt %. The antibacterial property of the resulting membranes was assessed using the Kirby Bauer disc diffusion method. The results show an inhibition zone formed around the PVDF/ginger membrane against Escherichia coli and Staphylococcus aureus demonstrating the efficacy of the residual ginger extract in the membrane matrix to impose the antibiofouling property. The addition of the ginger extract also enhanced the hydrophilicity in the membrane surface by lowering the contact angle from 93° to 85°, which was in good agreement with the increase in the pure water flux of up to 62%.
Journal Article
Production of High Flux Poly(Ether Sulfone) Membrane Using Silica Additive Extracted from Natural Resource
2020
This paper reports the application of silica derived from natural biomasses of rice husk and bagasse ashes as membrane modifying agents. The modification was conducted on poly(ether sulfone) (PES) membrane by blending the silica into the dope solution. The modification was aimed to improve the structure and hydraulic performance of the resulting PES membrane. The effects of silica addition to the membrane system were evaluated through the analysis of change in chemical structure using ATR-FTIR, surface morphological change using AFM, and surface hydrophilicity using water contact angle measurement. SEM and AFM images show the silica loading significantly affects the membranes morphologies. Silica loading also promotes hydrophilic property as shown by the decrease in water contact angles from 82° to 52–60° due to the presence of polar groups in some residual silica in the membrane matrix. Silica blending also leads to the formation of membranes with higher permeability of up to three folds but lower humic acid rejection (78–62%). The findings indicate the role of silica to enhance the membrane pore size. The ability of membrane to reject humic acid (of 0.8 nm minimum diameter) indicating that the resulting membranes were in between tight ultrafiltration and nanofiltration type. Nonetheless, applying too-high silica concentration decreased the humic acid rejection most likely due to over enlargement of the membrane pore size.
Journal Article
Simulation Assessment of Inlet Parameters and Membrane-Surface-Structure Effects on CO2 Absorption Flux in Membrane Contactors
by
Toraj Mohammadi
,
Nasrul Arahman
,
Saeid Rajabzadeh
in
Carbon dioxide
,
Carbon sequestration
,
CO2 absorption; MEA; membrane contactor; CFD; porosity; pore size
2022
The management of global carbon dioxide (CO2) emissions is considered one of the main environmental problems facing the modern world. One of the potential techniques for CO2 capture is absorption, using membrane contactor modules. Most of the previous research that dealt with membrane contactor simulations considered the whole membrane surface as the active reaction surface. However, in this paper, a more realistic model of the membrane-contactor module is presented, taking into account the effects of the pore size and surface porosity. CO2 absorption into the monoethanolamine (MEA) solution in hollow fiber membrane-contactor modules was numerically investigated. A computational fluid dynamics simulation was established using essential basic fluid dynamics and mass transfer equations in reactive mode. An algorithmic function was used to present the relations between the CO2 absorption flux and the hollow fiber length, membrane surface pore size, and porosity. The simulation results were compared to previously obtained experimental results without using any fitting parameters, and a good agreement was found with an average error of 8.5%. The validated simulation was then used to predict the effects of the MEA inlet velocity and concentration, the membrane surface pore size, and porosity on the total CO2 absorption flux. A maximum absorption flux of about 1.8 mol/m2·s was achieved at an MEA concentration of 4 M with a pore size of 0.2 microns, a surface porosity of 1%, and an inlet velocity of 0.25 m/s. The extrapolation technique was then used to predict the values of the absorption flux at longer fiber lengths. The concentration profiles around the pores at the gas–liquid contact surface of the membrane were obtained and presented. The proposed model exhibited excellent potential to evaluate the effective reaction surface in hollow fiber membrane contactors. This model could be considered the first step to obtaining accurate predictions of the membrane contactor gas absorption performance based on its surface structure.
Journal Article
The Water Flux Dynamic in a Hybrid Forward Osmosis-Membrane Distillation for Produced Water Treatment
by
Nordin, Nik
,
Mat Nawi, Normi
,
Kurnia, Jundika
in
Coal-fired power plants
,
Contact angle
,
Distillation
2020
Standalone membrane distillation (MD) and forward osmosis (FO) have been considered as promising technologies for produced water treatment. However, standalone MD is still vulnerable to membrane-wetting and scaling problems, while the standalone FO is energy-intensive, since it requires the recovery of the draw solution (DS). Thus, the idea of coupling FO and MD is proposed as a promising combination in which the MD facilitate DS recovery for FO—and FO acts as pretreatment to enhance fouling and wetting-resistance of the MD. This study was therefore conducted to investigate the effect of DS temperature on the dynamic of water flux of a hybrid FO–MD. First, the effect of the DS temperature on the standalone FO and MD was evaluated. Later, the flux dynamics of both units were evaluated when the FO and DS recovery (via MD) was run simultaneously. Results show that an increase in the temperature difference (from 20 to 60 °C) resulted in an increase of the FO and MD fluxes from 11.17 ± 3.85 to 30.17 ± 5.51 L m−2 h−1, and from 0.5 ± 0.75 to 16.08 L m−2 h−1, respectively. For the hybrid FO–MD, either MD or FO could act as the limiting process that dictates the equilibrium flux. Both the concentration and the temperature of DS affected the flux dynamic. When the FO flux was higher than MD flux, DS was diluted, and its temperature decreased; both then lowered the FO flux until reaching an equilibrium (equal FO and MD flux). When FO flux was lower than MD flux, the DS was concentrated which increased the FO flux until reaching the equilibrium. The overall results suggest the importance of temperature and concentration of solutes in the DS in affecting the water flux dynamic hybrid process.
Journal Article