Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
116
result(s) for
"Nattermann Jacob"
Sort by:
N-protein presents early in blood, dried blood and saliva during asymptomatic and symptomatic SARS-CoV-2 infection
2021
The COVID-19 pandemic continues to have an unprecedented impact on societies and economies worldwide. There remains an ongoing need for high-performance SARS-CoV-2 tests which may be broadly deployed for infection monitoring. Here we report a highly sensitive single molecule array (Simoa) immunoassay in development for detection of SARS-CoV-2 nucleocapsid protein (N-protein) in venous and capillary blood and saliva. In all matrices in the studies conducted to date we observe >98% negative percent agreement and >90% positive percent agreement with molecular testing for days 1–7 in symptomatic, asymptomatic, and pre-symptomatic PCR+ individuals. N-protein load decreases as anti-SARS-CoV-2 spike-IgG increases, and N-protein levels correlate with RT-PCR Ct-values in saliva, and between matched saliva and capillary blood samples. This Simoa SARS-CoV-2 N-protein assay effectively detects SARS-CoV-2 infection via measurement of antigen levels in blood or saliva, using non-invasive, swab-independent collection methods, offering potential for at home and point of care sample collection.
Here the authors develop a single molecule array (Simoa) immunoassay for detection of SARS-CoV-2 nucleocapsid protein in venous and dried capillary blood as well as saliva. The assay shows good performance in symptomatic, asymptomatic, and pre-symptomatic PCR+ individuals.
Journal Article
Interleukin-8 Is Activated in Patients with Chronic Liver Diseases and Associated with Hepatic Macrophage Accumulation in Human Liver Fibrosis
2011
Interleukin-8 (IL-8, CXCL8) is a potent chemoattractant for neutrophils and contributes to acute liver inflammation. Much less is known about IL-8 in chronic liver diseases (CLD), but elevated levels were reported from alcoholic and hepatitis C-related CLD. We investigated the regulation of IL-8, its receptors CXCR1 and CXCR2 and possible IL-8 responding cells in CLD patients.
Serum IL-8 levels were measured in CLD patients (n = 200) and healthy controls (n = 141). Intrahepatic IL-8, CXCR1 and CXCR2 gene expression was quantified from liver samples (n = 41), alongside immunohistochemical neutrophil (MPO) and macrophage (CD68) stainings. CXCR1 and CXCR2 expression was analyzed on purified monocytes from patients (n = 111) and controls (n = 31). In vitro analyses explored IL-8 secretion by different leukocyte subsets.
IL-8 serum levels were significantly increased in CLD patients, especially in end-stage cirrhosis. Interestingly, patients with cholestatic diseases exhibited highest IL-8 serum concentrations. IL-8 correlated with liver function, inflammatory cytokines and non-invasive fibrosis markers. Intrahepatically, IL-8 and CXCR1 expression were strongly up-regulated. However, intrahepatic IL-8 could only be associated to neutrophil infiltration in patients with primary biliary cirrhosis (PBC). In non-cholestatic cirrhosis, increased IL-8 and CXCR1 levels were associated with hepatic macrophage accumulation. In line, CXCR1, but not CXCR2 or CXCR3, expression was increased on circulating monocytes from cirrhotic patients. Moreover, monocyte-derived macrophages from CLD patients, especially the non-classical CD16⁺ subtype, displayed enhanced IL-8 secretion in vitro.
IL-8 is strongly activated in CLD, thus likely contributing to hepatic inflammation. Our study suggests a novel role of IL-8 for recruitment and activation of hepatic macrophages via CXCR1 in human liver cirrhosis.
Journal Article
Advancing artificial intelligence applicability in endoscopy through source-agnostic camera signal extraction from endoscopic images
by
Kafetzis, Ioannis
,
Hüneburg, Robert
,
Zoller, Wolfram G.
in
Artificial intelligence
,
Endoscopy
,
Image processing
2025
Successful application of artificial intelligence (AI) in endoscopy requires effective image processing. Yet, the plethora of sources for endoscopic images, such as different processor-endoscope combinations or capsule endoscopy devices, results in images that vastly differ in appearance. These differences hinder the generalizability of AI models in endoscopy. We developed an AI-based method for extracting the camera signal from raw endoscopic images in a source-agnostic manner. Additionally, we created a diverse dataset of standardized endoscopic images, named Endoscopic Processor Image Collection (EPIC), from 4 different endoscopy centers. Included data were recorded using 9 different processors from 4 manufacturers with 45 endoscopes. Furthermore, images recorded with 4 capsule endoscopy devices from 2 manufacturers are included. We evaluated the camera signal extraction method using 641 manually annotated images from 5 different, publicly available endoscopic image datasets, as well as on the EPIC dataset. Results were compared it with a published baseline in terms of Intersection over Union (IoU) and Hausdorff distance (HD). In segmenting the camera signal on images from public datasets, our method achieved mean IoU of 0.97 which was significantly higher than that of the baseline method and mean HD of 21 pixels which was significantly lower compared to the baseline. On the standardized images of the EPIC dataset, there was no significant difference between IoU but our method achieved a significantly lower HD. Both the developed AI-based method and the generated dataset are made publicly available. This work introduces an AI-based method that effectively segments the endoscope camera signal from the raw endoscopic data in a source-agnostic way. Utilizing the proposed method as a preprocessing step allows existing AI models to use any endoscopic image, independent of its source, without compromising performance. Additionally, EPIC, a dataset of diverse endoscopic images, is generated. The proposed method, trained AI model weights, and the EPIC dataset are made publicly available.
Journal Article
Advancing artificial intelligence applicability in endoscopy through source-agnostic camera signal extraction from endoscopic images
by
Kafetzis, Ioannis
,
Hüneburg, Robert
,
Zoller, Wolfram G.
in
Algorithms
,
Annotations
,
Artificial Intelligence
2025
Successful application of artificial intelligence (AI) in endoscopy requires effective image processing. Yet, the plethora of sources for endoscopic images, such as different processor-endoscope combinations or capsule endoscopy devices, results in images that vastly differ in appearance. These differences hinder the generalizability of AI models in endoscopy.
We developed an AI-based method for extracting the camera signal from raw endoscopic images in a source-agnostic manner. Additionally, we created a diverse dataset of standardized endoscopic images, named Endoscopic Processor Image Collection (EPIC), from 4 different endoscopy centers. Included data were recorded using 9 different processors from 4 manufacturers with 45 endoscopes. Furthermore, images recorded with 4 capsule endoscopy devices from 2 manufacturers are included. We evaluated the camera signal extraction method using 641 manually annotated images from 5 different, publicly available endoscopic image datasets, as well as on the EPIC dataset. Results were compared it with a published baseline in terms of Intersection over Union (IoU) and Hausdorff distance (HD).
In segmenting the camera signal on images from public datasets, our method achieved mean IoU of 0.97 which was significantly higher than that of the baseline method and mean HD of 21 pixels which was significantly lower compared to the baseline. On the standardized images of the EPIC dataset, there was no significant difference between IoU but our method achieved a significantly lower HD. Both the developed AI-based method and the generated dataset are made publicly available.
This work introduces an AI-based method that effectively segments the endoscope camera signal from the raw endoscopic data in a source-agnostic way. Utilizing the proposed method as a preprocessing step allows existing AI models to use any endoscopic image, independent of its source, without compromising performance. Additionally, EPIC, a dataset of diverse endoscopic images, is generated. The proposed method, trained AI model weights, and the EPIC dataset are made publicly available.
Journal Article
Impact of regular additional endobiliary radiofrequency ablation on survival of patients with advanced extrahepatic cholangiocarcinoma under systemic chemotherapy
2022
Prognosis of patients with advanced extrahepatic cholangiocarcinoma (eCCA) is poor. The current standard first-line treatment is systemic chemotherapy (CT) with gemcitabine and a platinum derivate. Additionally, endobiliary radiofrequency ablation (eRFA) can be applied to treat biliary obstructions. This study aimed to evaluate the additional benefit of scheduled regular eRFA in a real-life patient cohort with advanced extrahepatic cholangiocarcinoma under standard systemic CT. All patients with irresectable eCCA treated at University Hospital Bonn between 2010 and 2020 were eligible for inclusion. Patients were stratified according to treatment: standard CT (n = 26) vs. combination of eRFA with standard CT (n = 40). Overall survival (OS), progression free survival (PFS), feasibility and toxicity were retrospectively analyzed using univariate and multivariate approaches. Combined eRFA and CT resulted in significantly longer median OS (17.3 vs. 8.6 months, p = 0.004) and PFS (12.9 vs. 5.7 months, p = 0.045) compared to the CT only group. While groups did not differ regarding age, sex, tumor stage and chemotherapy treatment regimen, mean MELD was even higher (10.1 vs. 6.7, p = 0.015) in the eRFA + CT group. The survival benefit of concomitant eRFA was more evident in the subgroup with locally advanced tumors. Severe hematological toxicities (CTCAE grades 3 – 5) did not differ significantly between the groups. However, therapy-related cholangitis occurred more often in the combined treatment group (p = 0.031). Combination of eRFA and systemic CT was feasible, well-tolerated and could significantly prolong survival compared to standard CT alone. Thus, eRFA should be considered during therapeutic decision making in advanced eCCA.
Journal Article
Functional Contribution of Elevated Circulating and Hepatic Non-Classical CD14+CD16+ Monocytes to Inflammation and Human Liver Fibrosis
by
Gassler, Nikolaus
,
Weiskirchen, Ralf
,
Zernecke, Alma
in
Animal models
,
Blood circulation
,
Bone marrow
2010
Background Monocyte-derived macrophages critically perpetuate inflammatory responses after liver injury as a prerequisite for organ fibrosis. Experimental murine models identified an essential role for the CCR2-dependent infiltration of classical Gr1/Ly6C+ monocytes in hepatic fibrosis. Moreover, the monocyte-related chemokine receptors CCR1 and CCR5 were recently recognized as important fibrosis modulators in mice. In humans, monocytes consist of classical CD14+CD16− and non-classical CD14+CD16+ cells. We aimed at investigating the relevance of monocyte subpopulations for human liver fibrosis, and hypothesized that ‘non-classical’ monocytes critically exert inflammatory as well as profibrogenic functions in patients during liver disease progression. Methodology/Principal Findings We analyzed circulating monocyte subsets from freshly drawn blood samples of 226 patients with chronic liver disease (CLD) and 184 healthy controls by FACS analysis. Circulating monocytes were significantly expanded in CLD-patients compared to controls with a marked increase of the non-classical CD14+CD16+ subset that showed an activated phenotype in patients and correlated with proinflammatory cytokines and clinical progression. Correspondingly, CD14+CD16+ macrophages massively accumulated in fibrotic/cirrhotic livers, as evidenced by immunofluorescence and FACS. Ligands of monocyte-related chemokine receptors CCR2, CCR1 and CCR5 were expressed at higher levels in fibrotic and cirrhotic livers, while CCL3 and CCL4 were also systemically elevated in CLD-patients. Isolated monocyte/macrophage subpopulations were functionally characterized regarding cytokine/chemokine expression and interactions with primary human hepatic stellate cells (HSC) in vitro. CD14+CD16+ monocytes released abundant proinflammatory cytokines. Furthermore, CD14+CD16+, but not CD14+CD16− monocytes could directly activate collagen-producing HSC. Conclusions/Significance Our data demonstrate the expansion of CD14+CD16+ monocytes in the circulation and liver of CLD-patients upon disease progression and suggest their functional contribution to the perpetuation of intrahepatic inflammation and profibrogenic HSC activation in liver cirrhosis. The modulation of monocyte-subset recruitment into the liver via chemokines/chemokine receptors and their subsequent differentiation may represent promising approaches for therapeutic interventions in human liver fibrosis.
Journal Article
Compartment-specific distribution of human intestinal innate lymphoid cells is altered in HIV patients under effective therapy
by
Kaczmarek, Dominik
,
Boesecke, Christoph
,
Nischalke, Hans Dieter
in
Analysis
,
Biology and Life Sciences
,
Colon
2017
Innate lymphocyte cells (ILCs), a novel family of innate immune cells are considered to function as key orchestrators of immune defences at mucosal surfaces and to be crucial for maintaining an intact intestinal barrier. Accordingly, first data suggest depletion of ILCs to be involved in human immunodeficiency virus (HIV)-associated damage of the intestinal mucosa and subsequent microbial translocation. However, although ILCs are preferentially localized at mucosal surfaces, only little is known regarding distribution and function of ILCs in the human gastrointestinal tract. Here, we show that in HIV(-) individuals composition and functional capacity of intestinal ILCs is compartment-specific with group 1 ILCs representing the major fraction in the upper gastrointestinal (GI) tract, whereas ILC3 are the predominant population in ileum and colon, respectively. In addition, we present first data indicating that local cytokine concentrations, especially that of IL-7, might modulate composition of gut ILCs. Distribution of intestinal ILCs was significantly altered in HIV patients, who displayed decreased frequency of total ILCs in ileum and colon owing to reduced numbers of both CD127(+)ILC1 and ILC3. Of note, frequency of colonic ILC3 was inversely correlated with serum levels of I-FABP and sCD14, surrogate markers for loss of gut barrier integrity and microbial translocation, respectively. Both expression of the IL-7 receptor CD127 on ILCs as well as mucosal IL-7 mRNA levels were decreased in HIV(+) patients, especially in those parts of the GI tract with reduced ILC frequencies, suggesting that impaired IL-7 responses of ILCs might contribute to incomplete reconstitution of ILCs under effective anti-retroviral therapy. This is the first report comparing distribution and function of ILCs along the intestinal mucosa of the entire human gastrointestinal tract in HIV(+) and HIV(-) individuals.
Journal Article
NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner
by
Spengler, Ulrich
,
Glässner, Andreas
,
Krämer, Benjamin
in
631/250/1619/382
,
631/80/82/23
,
692/699/1503/1607/1605
2012
In mouse models it has been shown that natural killer (NK) cells can attenuate liver fibrosis via killing of activated hepatic stellate cells (HSCs) in a NKG2D- and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-dependent manner. However, only little data exist regarding interactions of human NK cells with HSCs and their potential role in hepatitis C virus (HCV)-associated fibrogenesis. Therefore, purified NK cells from untreated HCV RNA(+) patients (n=33), interferon-α (IFN-α)-treated patients (n=17) and healthy controls (n=18) were coincubated with activated primary HSCs, and were tested for degranulation (CD107a expression) and secretion of IFN-γ and TNF-α, respectively. Induction of HSC apoptosis was analyzed using an active caspase-3 assay. We found that following coincubation with HSCs a significant increase in CD107a expression could be observed in both NK cells from HCV(+) patients and healthy controls, whereas only negligible secretion of IFN-γ and TNF-α could be detected. More importantly, NK cells from untreated HCV RNA(+) patients were significantly more effective in induction of HSC apoptosis (17.8±9.2%) than NK cells from healthy controls (6.2±2.1%; P<0.0001). Additionally, we observed an inverse correlation of liver fibrosis stage and the ability of NK cells to induce HSC apoptosis. Induction of HSC apoptosis was contact dependent and could partly be blocked by antibodies specific for TRAIL, NKG2D and FasL, respectively. It is noteworthy that NK cells from IFN-α-treated HCV(+) patients displayed the highest capability to kill HSCs (27.6±10.5%). Accordingly, pre-stimulation of NK cells with recombinant IFN-α significantly increased the ability of NK cells to induce cell death in primary HSCs and was dependent on upregulated expression of TRAIL. Here we demonstrate that NK cells from HCV-infected patients are highly efficient in inducing apoptosis of activated HSCs. Thus, NK cells may have an important anti-fibrotic role in chronic hepatitis C.
Journal Article
SIV-induced terminally differentiated adaptive NK cells in lymph nodes associated with enhanced MHC-E restricted activity
2021
Natural killer (NK) cells play a critical understudied role during HIV infection in tissues. In a natural host of SIV, the African green monkey (AGM), NK cells mediate a strong control of SIVagm infection in secondary lymphoid tissues. We demonstrate that SIVagm infection induces the expansion of terminally differentiated NKG2a
low
NK cells in secondary lymphoid organs displaying an adaptive transcriptional profile and increased MHC-E-restricted cytotoxicity in response to SIV Env peptides while expressing little IFN-γ. Such NK cell differentiation was lacking in SIVmac-infected macaques. Adaptive NK cells displayed no increased
NKG2C
expression. This study reveals a previously unknown profile of NK cell adaptation to a viral infection, thus accelerating strategies toward NK-cell directed therapies and viral control in tissues.
NK cells control SIV infection in secondary lymphoid tissues in the natural host that typically doesn’t progress toward disease. Here the authors show that this control is associated with terminal NK cell differentiation and improved MHC-E-dependent activity lacking in pathogenic SIV infection.
Journal Article