Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
62
result(s) for
"Nazarenko, Larissa"
Sort by:
Constraining human contributions to observed warming since the pre-industrial period
by
Hegerl, Gabriele C
,
Li, Lijuan
,
Nazarenko Larissa
in
Aerosols
,
Air temperature
,
Anthropogenic factors
2021
Parties to the Paris Agreement agreed to holding global average temperature increases “well below 2 °C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 °C above pre-industrial levels”. Monitoring the contributions of human-induced climate forcings to warming so far is key to understanding progress towards these goals. Here we use climate model simulations from the Detection and Attribution Model Intercomparison Project, as well as regularized optimal fingerprinting, to show that anthropogenic forcings caused 0.9 to 1.3 °C of warming in global mean near-surface air temperature in 2010–2019 relative to 1850–1900, compared with an observed warming of 1.1 °C. Greenhouse gases and aerosols contributed changes of 1.2 to 1.9 °C and −0.7 to −0.1 °C, respectively, and natural forcings contributed negligibly. These results demonstrate the substantial human influence on climate so far and the urgency of action needed to meet the Paris Agreement goals.Quantifying the temperature impacts of anthropogenic emissions helps monitor proximity to the Paris Agreement goals. Human activities warmed global mean temperature during the past decade by 0.9 to 1.3 °C above 1850–1900 values, with 1.2 to 1.9 °C from greenhouse gases and −0.7 to −0.1 °C from aerosols.
Journal Article
Implications for Climate Sensitivity from the Response to Individual Forcings
by
Marvel, Kate
,
Nazarenko, Larissa
,
Schmidt, Gavin A
in
704/106/694/1108
,
704/106/694/2786
,
Carbon dioxide
2016
Climate sensitivity to doubled CO2 is a widely-used metric of the large-scale response to external forcing. Climate models predict a wide range for two commonly used definitions: the transient climate response (TCR: the warming after 70 years of CO2 concentrations that riseat 1 per year), and the equilibrium climate sensitivity (ECS: the equilibrium temperature change following a doubling of CO2 concentrations). Many observational datasets have been used to constrain these values, including temperature trends over the recent past 16, inferences from paleo-climate and process-based constraints from the modern satellite eras. However, as the IPCC recently reported different classes of observational constraints produce somewhat incongruent ranges. Here we show that climate sensitivity estimates derived from recent observations must account for the efficacy of each forcing active during the historical period. When we use single forcing experiments to estimate these efficacies and calculate climate sensitivity from the observed twentieth-century warming, our estimates of both TCR and ECS are revised upward compared to previous studies, improving the consistency with independent constraints.
Journal Article
Irrigation as an historical climate forcing
by
Nazarenko, Larissa S.
,
Puma, Michael J.
,
Shukla, Sonali P.
in
aerosols
,
Air temperature
,
Anthropogenic factors
2015
Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols, greenhouse gases, etc.) dominate the long term climate evolution in the simulations. To better constrain the magnitude and uncertainties of irrigation-forced climate anomalies, irrigation should therefore be considered as another important anthropogenic climate forcing in the next generation of historical climate simulations and multi-model assessments.
Journal Article
Global warming in the pipeline
2023
Improved knowledge of glacial-to-interglacial global temperature change yields Charney (fast-feedback) equilibrium climate sensitivity 1.2 ± 0.3°C (2σ) per W/m2, which is 4.8°C ± 1.2°C for doubled CO2. Consistent analysis of temperature over the full Cenozoic era—including ‘slow’ feedbacks by ice sheets and trace gases—supports this sensitivity and implies that CO2 was 300–350 ppm in the Pliocene and about 450 ppm at transition to a nearly ice-free planet, exposing unrealistic lethargy of ice sheet models. Equilibrium global warming for today’s GHG amount is 10°C, which is reduced to 8°C by today’s human-made aerosols. Equilibrium warming is not ‘committed’ warming; rapid phaseout of GHG emissions would prevent most equilibrium warming from occurring. However, decline of aerosol emissions since 2010 should increase the 1970–2010 global warming rate of 0.18°C per decade to a post-2010 rate of at least 0.27°C per decade. Thus, under the present geopolitical approach to GHG emissions, global warming will exceed 1.5°C in the 2020s and 2°C before 2050. Impacts on people and nature will accelerate as global warming increases hydrologic (weather) extremes. The enormity of consequences demands a return to Holocene-level global temperature. Required actions include: (1) a global increasing price on GHG emissions accompanied by development of abundant, affordable, dispatchable clean energy, (2) East-West cooperation in a way that accommodates developing world needs, and (3) intervention with Earth’s radiation imbalance to phase down today’s massive human-made ‘geo-transformation’ of Earth’s climate. Current political crises present an opportunity for reset, especially if young people can grasp their situation.
Journal Article
Soot Climate Forcing via Snow and Ice Albedos
2004
Plausible estimates for the effect of soot on snow and ice albedos (1.5% in the Arctic and 3% in Northern Hemisphere land areas) yield a climate forcing of +0.3 W/m2in the Northern Hemisphere. The \"efficacy\" of this forcing is ≈ 2, i.e., for a given forcing it is twice as effective as CO2in altering global surface air temperature. This indirect soot forcing may have contributed to global warming of the past century, including the trend toward early springs in the Northern Hemisphere, thinning Arctic sea ice, and melting land ice and permafrost. If, as we suggest, melting ice and sea level rise define the level of dangerous anthropogenic interference with the climate system, then reducing soot emissions, thus restoring snow albedos to pristine high values, would have the double benefit of reducing global warming and raising the global temperature level at which dangerous anthropogenic interference occurs. However, soot contributions to climate change do not alter the conclusion that anthropogenic greenhouse gases have been the main cause of recent global warming and will be the predominant climate forcing in the future.
Journal Article
Effective radiative forcing and adjustments in CMIP6 models
by
Olivié, Dirk
,
Myhre, Gunnar
,
Wiltshire, Andy
in
Aerosol-cloud interactions
,
Aerosols
,
Air pollution
2020
The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (±0.23) W/sq. m, comprised of 1.81 (±0.09) W/sq. m from CO2, 1.08 (± 0.21) W/sq. m from other well-mixed greenhouse gases, −1.01 (± 0.23) W/sq. m from aerosols and −0.09 (±0.13) W/sq. m from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W/sq. m. The majority of the remaining 0.21 W/sq. m is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol–cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W/sq. m, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming.
Journal Article
Temperature and Precipitation Extremes Under SSP Emission Scenarios with GISS-E2.1 Model
by
Nazarenko, Larissa S.
,
Tausnev, Nickolai L.
,
Elling, Maxwell T.
in
21st century
,
Aerosols
,
Atmospheric boundary layer
2025
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which include an intensification of precipitation extremes. Using the GISS-E2.1 climate model, we present the future changes in the coldest and hottest daily temperatures as well as in extreme precipitation indices (under four main Shared Socioeconomic Pathways (SSPs)). The increase in the wet-day precipitation ranges between 6% and 15% per 1 °C global surface temperature warming. Scaling of the 95th percentile versus the total precipitation showed that the sensitivity for the extreme precipitation to the warming is about 10 times stronger than that for the mean total precipitation. For six precipitation extreme indices (Total Precipitation, R95p, RX5day, R10mm, SDII, and CDD), the histograms of probability density functions become flatter, with reduced peaks and increased spread for the global mean compared to the historical period of 1850–2014. The mean values shift to the right end (toward larger precipitation and intensity). The higher the GHG emission of the SSP scenario, the more significant the increase in the index change. We found an intensification of precipitation over the globe but large uncertainties remained regionally and at different scales, especially for extremes. Over land, there is a strong increase in precipitation for the wettest day in all seasons over the mid and high latitudes of the Northern Hemisphere. There is an enlargement of the drying patterns in the subtropics including over large regions around Mediterranean, southern Africa, and western Eurasia. For the continental averages, the reduction in total precipitation was found for South America, Europe, Africa, and Australia, and there is an increase in total precipitation over North America, Asia, and the continental Russian Arctic. Over the continental Russian Arctic, there is an increase in all precipitation extremes and a consistent decrease in CDD for all SSP scenarios, with the maximum increase of more than 90% for R95p and R10 mm observed under SSP5–8.5.
Journal Article
Impacts of irrigation expansion on moist-heat stress based on IRRMIP results
2025
Irrigation rapidly expanded during the 20
t
h
century, affecting climate via water, energy, and biogeochemical changes. Previous assessments of these effects predominantly relied on a single Earth System Model, and therefore suffered from structural model uncertainties. Here we quantify the impacts of historical irrigation expansion on climate by analysing simulation results from six Earth system models participating in the Irrigation Model Intercomparison Project (IRRMIP). Results show that irrigation expansion causes a rapid increase in irrigation water withdrawal, which leads to less frequent 2-meter air temperature heat extremes across heavily irrigated areas (≥4 times less likely). However, due to the irrigation-induced increase in air humidity, the cooling effect of irrigation expansion on moist-heat stress is less pronounced or even reversed, depending on the heat stress metric. In summary, this study indicates that irrigation deployment is not an efficient adaptation measure to escalating human heat stress under climate change, calling for carefully dealing with the increased exposure of local people to moist-heat stress.
Although irrigation expansion during the 20th century masked or even reversed local warming trends over some intensely irrigated regions, the exposure to moist-heat extremes of local population has increased due to higher air humidity.
Journal Article
Atmospheric Response to a Collapse of the North Atlantic Circulation under a Mid-Range Future Climate Scenario
by
Nazarenko, Larissa S.
,
Schmidt, Gavin A.
,
Kelley, Maxwell
in
Atlantic Meridional Overturning Circulation (AMOC)
,
Bifurcations
,
Carbon dioxide
2023
Climate models project a future weakening of the Atlantic meridional overturning circulation (AMOC), but the impacts of this weakening on climate remain highly uncertain. A key challenge in quantifying the impact of an AMOC decline is in isolating its influence on climate, relative to other changes associated with increased greenhouse gases. Here we isolate the climate impacts of a weakened AMOC in the broader context of a warming climate using a unique ensemble of Shared Socioeconomic Pathway (SSP) 2–4.5 integrations that was performed using the Climate Model Intercomparison Project phase 6 (CMIP6) version of the NASA Goddard Institute for Space Studies ModelE (E2.1). In these runs internal variability alone results in a spontaneous bifurcation of the ocean flow, wherein 2 out of 10 ensemble members exhibit an entire AMOC collapse, while the other 8 members recover at various stages despite identical forcing of each ensemble member and with no externally prescribed freshwater perturbation. We show that an AMOC collapse results in an abrupt northward shift and strengthening of the Northern Hemisphere (NH) Hadley cell (HC) and intensification of the northern midlatitude eddy-driven jet. We then use a set of coupled atmosphere–ocean abrupt CO₂ experiments spanning the range 1 times to 5 times CO2 (1x to 5xCO₂) to show that this response to an AMOC collapse results in a nonlinear shift in the NH circulation moving from 2xCO₂ to 3xCO₂. Slab-ocean versions of these experiments, by comparison, do not capture this nonlinear behavior. Our results suggest that changes in ocean heat flux convergences associated with an AMOC collapse—while highly uncertain—can result in profound changes in the NH circulation and continued efforts to constrain the AMOC response to future climate change are needed.
Journal Article
Volcanic contribution to decadal changes in tropospheric temperature
by
Zelinka, Mark D.
,
Schmidt, Gavin A.
,
Taylor, Karl E.
in
704/106/694/674
,
Aerosol optical depth
,
Aerosols
2014
Global mean surface and tropospheric temperatures have shown slower warming since 1998 than found in climate model simulations. A detailed analysis of observations and climate model simulations suggests that the observed influence of volcanic eruptions on tropospheric temperature has been significant, and that the discrepancy between climate simulations and observations is reduced by up to 15% when twenty-first century volcanic eruptions are accounted for in the models.
Despite continued growth in atmospheric levels of greenhouse gases, global mean surface and tropospheric temperatures have shown slower warming since 1998 than previously
1
,
2
,
3
,
4
,
5
. Possible explanations for the slow-down include internal climate variability
3
,
4
,
6
,
7
, external cooling influences
1
,
2
,
4
,
8
,
9
,
10
,
11
and observational errors
12
,
13
. Several recent modelling studies have examined the contribution of early twenty-first-century volcanic eruptions
1
,
2
,
4
,
8
to the muted surface warming. Here we present a detailed analysis of the impact of recent volcanic forcing on tropospheric temperature, based on observations as well as climate model simulations. We identify statistically significant correlations between observations of stratospheric aerosol optical depth and satellite-based estimates of both tropospheric temperature and short-wave fluxes at the top of the atmosphere. We show that climate model simulations without the effects of early twenty-first-century volcanic eruptions overestimate the tropospheric warming observed since 1998. In two simulations with more realistic volcanic influences following the 1991 Pinatubo eruption, differences between simulated and observed tropospheric temperature trends over the period 1998 to 2012 are up to 15% smaller, with large uncertainties in the magnitude of the effect. To reduce these uncertainties, better observations of eruption-specific properties of volcanic aerosols are needed, as well as improved representation of these eruption-specific properties in climate model simulations.
Journal Article