Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
32 result(s) for "Neef, Stefan"
Sort by:
δ isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload
Acute and chronic injuries to the heart result in perturbation of intracellular calcium signaling, which leads to pathological cardiac hypertrophy and remodeling. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the transduction of calcium signals in the heart, but the specific isoforms of CaMKII that mediate pathological cardiac signaling have not been fully defined. To investigate the potential involvement in heart disease of CaMKIIδ, the major CaMKII isoform expressed in the heart, we generated CaMKIIδ-null mice. These mice are viable and display no overt abnormalities in cardiac structure or function in the absence of stress. However, pathological cardiac hypertrophy and remodeling are attenuated in response to pressure overload in these animals. Cardiac extracts from CaMKIIδ-null mice showed diminished kinase activity toward histone deacetylase 4 (HDAC4), a substrate of stress-responsive protein kinases and suppressor of stress-dependent cardiac remodeling. In contrast, phosphorylation of the closely related HDAC5 was unaffected in hearts of CaMKIIδ-null mice, underscoring the specificity of the CaMKIIδ signaling pathway for HDAC4 phosphorylation. We conclude that CaMKIIδ functions as an important transducer of stress stimuli involved in pathological cardiac remodeling in vivo, which is mediated, at least in part, by the phosphorylation of HDAC4. These findings point to CaMKIIδ as a potential therapeutic target for the maintenance of cardiac function in the setting of pressure overload.
Ca2+/calmodulin‐dependent kinase IIδC‐induced chronic heart failure does not depend on sarcoplasmic reticulum Ca2+ leak
Aims Hyperactivity of Ca2+/calmodulin‐dependent protein kinase II (CaMKII) has emerged as a central cause of pathologic remodelling in heart failure. It has been suggested that CaMKII‐induced hyperphosphorylation of the ryanodine receptor 2 (RyR2) and consequently increased diastolic Ca2+ leak from the sarcoplasmic reticulum (SR) is a crucial mechanism by which increased CaMKII activity leads to contractile dysfunction. We aim to evaluate the relevance of CaMKII‐dependent RyR2 phosphorylation for CaMKII‐induced heart failure development in vivo. Methods and results We crossbred CaMKIIδC overexpressing [transgenic (TG)] mice with RyR2‐S2814A knock‐in mice that are resistant to CaMKII‐dependent RyR2 phosphorylation. Ca2+‐spark measurements on isolated ventricular myocytes confirmed the severe diastolic SR Ca2+ leak previously reported in CaMKIIδC TG [4.65 ± 0.73 mF/F0 vs. 1.88 ± 0.30 mF/F0 in wild type (WT)]. Crossing in the S2814A mutation completely prevented SR Ca2+‐leak induction in the CaMKIIδC TG, both regarding Ca2+‐spark size and frequency, demonstrating that the CaMKIIδC‐induced SR Ca2+ leak entirely depends on the CaMKII‐specific RyR2‐S2814 phosphorylation. Yet, the RyR2‐S2814A mutation did not affect the massive contractile dysfunction (ejection fraction = 12.17 ± 2.05% vs. 45.15 ± 3.46% in WT), cardiac hypertrophy (heart weight/tibia length = 24.84 ± 3.00 vs. 9.81 ± 0.50 mg/mm in WT), or severe premature mortality (median survival of 12 weeks) associated with cardiac CaMKIIδC overexpression. In the face of a prevented SR Ca2+ leak, the phosphorylation status of other critical CaMKII downstream targets that can drive heart failure, including transcriptional regulator histone deacetylase 4, as well as markers of pathological gene expression including Xirp2, Il6, and Col1a1, was equally increased in hearts from CaMKIIδC TG on a RyR WT and S2814A background. Conclusions S2814 phosphoresistance of RyR2 prevents the CaMKII‐dependent SR Ca2+ leak induction but does not prevent the cardiomyopathic phenotype caused by enhanced CaMKIIδC activity. Our data indicate that additional mechanisms—independent of SR Ca2+ leak—are critical for the maladaptive effects of chronically increased CaMKIIδC activity with respect to heart failure.
The oral Ca/calmodulin‐dependent kinase II inhibitor RA608 improves contractile function and prevents arrhythmias in heart failure
Aims Excessive activation of Ca/calmodulin‐dependent kinase II (CaMKII) is of critical importance in heart failure (HF) and atrial fibrillation. Unfortunately, lack of selectivity, specificity, and bioavailability have slowed down development of inhibitors for clinical use. We investigated a novel CaMKIIδ/CaMKIIɣ‐selective, ATP‐competitive, orally available CaMKII inhibitor (RA608) on right atrial biopsies of 119 patients undergoing heart surgery. Furthermore, we evaluated its oral efficacy to prevent deterioration of HF in mice after transverse aortic constriction (TAC). Methods and results In human atrial cardiomyocytes and trabeculae, respectively, RA608 significantly reduced sarcoplasmic reticulum Ca leak, reduced diastolic tension, and increased sarcoplasmic reticulum Ca content. Patch‐clamp recordings confirmed the safety of RA608 in human cardiomyocytes. C57BL6/J mice were subjected to TAC, and left ventricular function was monitored by echocardiography. Two weeks after TAC, RA608 was administered by oral gavage for 7 days. Oral RA608 treatment prevented deterioration of ejection fraction. At 3 weeks after TAC, ejection fraction was 46.1 ± 3.7% (RA608) vs. 34.9 ± 2.6% (vehicle), n = 9 vs. n = 12, P < 0.05, ANOVA, which correlated with significantly less CaMKII autophosphorylation at threonine 287. Moreover, a single oral dose significantly reduced inducibility of atrial and ventricular arrhythmias in CaMKIIδ transgenic mice 4 h after administration. Atrial fibrillation was induced in 6/6 mice for vehicle vs. 1/7 for RA608, P < 0.05, 'n − 1'  χ2 test. Ventricular tachycardia was induced in 6/7 for vehicle vs. 2/7 for RA608, P < 0.05, 'n − 1'  χ2 test. Conclusions RA608 is the first orally administrable CaMKII inhibitor with potent efficacy in human myocytes. Moreover, oral administration potently inhibits arrhythmogenesis and attenuates HF development in mice in vivo.
Phosphorylation of RyR2 Ser‐2814 by CaMKII mediates β1‐adrenergic stress induced Ca2+‐leak from the sarcoplasmic reticulum
Adrenergic stimulation, while being the central mechanism of cardiac positive inotropy, is a universally acknowledged inductor of undesirable sarcoplasmic reticulum (SR) Ca2+ leak. However, the exact mechanisms for this remained unspecified so far. This study shows that Ca2+/calmodulin‐dependent protein kinase II (CaMKII)‐specific phosphorylation of ryanodine receptor type 2 at Ser‐2814 is the pivotal mechanism by which SR Ca2+ leak develops downstream of β1‐adrenergic stress by increase of the leak/load relationship. Cardiomyocytes with a Ser‐2814 phosphoresistant mutation (S2814A) were protected from isoproterenol‐induced SR Ca2+ leak and consequently displayed improved postrest potentiation of systolic Ca2+ release under adrenergic stress compared to littermate wild‐type cells. This study shows that Ca2+/calmodulin‐dependent protein kinase II‐specific phosphorylation of ryanodine receptor type 2 at Ser‐2814 is the pivotal mechanism by which sarcoplasmic reticulum Ca2+ leak develops downstream of β1‐adrenergic stress by increase of the leak/load relationship.
Patient delay and benefit of timely reperfusion in ST-segment elevation myocardial infarction
BackgroundIn patients with ST-segment elevation myocardial infarction (STEMI), it is unknown how patient delay modulates the beneficial effects of timely reperfusion.AimsTo assess the prognostic significance of a contact-to-balloon time of less than 90 min on in-hospital mortality in different categories of symptom-onset-to-first-medical-contact (S2C) times.MethodsA total of 20 005 consecutive patients from the Feedback Intervention and Treatment Times in ST-segment Elevation Myocardial Infarction (FITT-STEMI) programme treated with primary percutaneous coronary intervention (PCI) were included.ResultsThere were 1554 deaths (7.8%) with a J-shaped relationship between mortality and S2C time. Mortality was 10.0% in patients presenting within 1 hour, and 4.9%, 6.0% and 7.3% in patient groups with longer S2C intervals of 1–2 hours, 2–6 hours and 6–24 hours, respectively. Patients with a short S2C interval of less than 1 hour (S2C<60 min) had the highest survival benefit from timely reperfusion with PCI within 90 min (OR 0.27, 95% CI 0.23 to 0.31, p<0.0001) as compared with the three groups with longer S2C intervals of 1 hour
A Pilot Trial to Compare the Long-Term Efficacy of Pulmonary Vein Isolation with High-Power Short-Duration Radiofrequency Versus Laser Energy with Rapid Ablation Mode
Background: Pulmonary vein (PV) reconnection is the major cause of atrial fibrillation (AF) recurrence after pulmonary vein isolation (PVI). The probability of reconnection is higher if the primary lesion is not sufficiently effective, which can be unmasked with an adenosine provocation test (APT). High-power short-duration radiofrequency energy (HPSD) guided with ablation index (AI) and the third generation of the visually guided laser balloon (VGLB) are new methods for PVI. Methods: A total of 70 participants (35 in each group) who underwent a PVI with either AI-guided HPSD (50 W; AI 500 for the anterior and 400 for the posterior wall, respectively) or VGLB ablation were included in this observational pilot trial. Twenty minutes after each PVI, an APT was performed. The primary endpoint was the event-free survival from AF after three years. Results: A total of 137 (100%) PVs in the HPSD arm and 131 PVs (98.5%) in the VGLB arm were initially successfully isolated (p = 0.24). The overall procedure duration was similar in both arms (155 ± 39 in HPSD vs. 175 ± 58 min in VGLB, p = 0.191). Fluoroscopy time, left atrial dwelling time and duration from the first to the last ablation were longer in the VGLB arm (23 ± 8 vs. 12 ± 3 min, p < 0.001; 157 (111–185) vs. 134 (104–154) min, p = 0.049; 92(59–108) vs. 72 (43–85) min, p = 0.010). A total of 127 (93%) in the HPSD arm and 126 (95%) PVs in the VGLB arm remained isolated after APT (p = 0.34). The primary endpoint was met 1107 ± 68 days after ablation in 71% vs. 66% in the VGLB and HPSD arms, respectively (p = 0.65). Conclusions: HPSD and VGLB did not differ with respect to long-term outcome of PVI. A large, randomized study should be conducted to compare clinical outcomes with respect to these new ablation techniques.
Reduction of SR Ca2+ leak and arrhythmogenic cellular correlates by SMP-114, a novel CaMKII inhibitor with oral bioavailability
Sarcoplasmic reticulum (SR) Ca 2+ leak induced by Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) is centrally involved in atrial and ventricular arrhythmogenesis as well as heart failure remodeling. Consequently, treating SR Ca 2+ leak has been proposed as a novel therapeutic paradigm, but compounds for use in humans are lacking. SMP-114 (“Rimacalib”) is a novel, orally available CaMKII inhibitor developed for human use that has already entered clinical phase II trials to treat rheumatoid arthritis. We speculated that SMP-114 might also be useful to treat cardiac SR Ca 2+ leak. SMP-114 significantly reduces SR Ca 2+ leak (as assessed by Ca 2+ sparks) in human atrial (0.72 ± 0.33 sparks/100 µm/s vs. control 3.02 ± 0.91 sparks/100 µm/s) and failing left ventricular (0.78 ± 0.23 vs. 1.69 ± 0.27 sparks/100 µm/s) as well as in murine ventricular cardiomyocytes (0.30 ± 0.07 vs. 1.50 ± 0.28 sparks/100 µm/s). Associated with lower SR Ca 2+ leak, we found that SMP-114 suppressed the occurrence of spontaneous arrhythmogenic spontaneous Ca 2+ release (0.356 ± 0.109 vs. 0.927 ± 0.216 events per 30 s stimulation cessation). In consequence, post-rest potentiation of Ca 2+ -transient amplitude (measured using Fura-2) during the 30 s pause was improved by SMP-114 (52 ± 5 vs. 37 ± 4%). Noteworthy, SMP-114 has these beneficial effects without negatively impairing global excitation–contraction coupling: neither systolic Ca 2+ release nor single cell contractility was compromised, and also SR Ca 2+ reuptake, in line with resulting cardiomyocyte relaxation, was not impaired by SMP-114 in our assays. SMP-114 demonstrated potential to treat SR Ca 2+ leak and consequently proarrhythmogenic events in rodent as well as in human atrial cardiomyocytes and cardiomyocytes from patients with heart failure. Further research is necessary towards clinical use in cardiac disease.
Novel aspects of excitation–contraction coupling in heart failure
Excitation–contraction coupling is the process by which electrical activation is translated into contraction of a cardiac myocyte and thus the heart. In heart failure, expression, phosphorylation, and function of several intracellular proteins that are involved in excitation–contraction coupling are altered. The present review article summarizes central principles and highlights novel aspects of alterations in heart failure, focusing especially on recent findings regarding altered sarcoplasmic reticulum Ca 2+ -leak and late Na + -current without being able to cover all changes in full detail. These two pathomechanisms seem to play interesting roles with respect to systolic and diastolic dysfunction and may also be important for cardiac arrhythmias. Furthermore, the article outlines the translation of these novel findings into potential therapeutic approaches.
Cardiac RKIP induces a beneficial β-adrenoceptor–dependent positive inotropy
Induction of cardiac contractility, although desirable for restoring heart function, often has long-term detrimental effects. From studies on RKIP, an upstream regulator of β-adrenergic receptor signaling, Schmid et al . show that cardiac contractility in mice can be increased in a well-tolerated manner through the balanced activation of the β1 and β2 subtypes of the adrenergic receptor. In heart failure therapy, it is generally assumed that attempts to produce a long-term increase in cardiac contractile force are almost always accompanied by structural and functional damage. Here we show that modest overexpression of the Raf kinase inhibitor protein (RKIP), encoded by Pebp1 in mice, produces a well-tolerated, persistent increase in cardiac contractility that is mediated by the β 1 -adrenoceptor (β 1 AR). This result is unexpected, as β 1 AR activation, a major driver of cardiac contractility, usually has long-term adverse effects. RKIP overexpression achieves this tolerance via simultaneous activation of the β 2 AR subtype. Analogously, RKIP deficiency exaggerates pressure overload–induced cardiac failure. We find that RKIP expression is upregulated in mouse and human heart failure, indicative of an adaptive role for RKIP. Pebp1 gene transfer in a mouse model of heart failure has beneficial effects, suggesting a new therapeutic strategy for heart failure therapy.