Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
21
result(s) for
"Neefs, Jean-Marc"
Sort by:
Tales of 1,008 small molecules: phenomic profiling through live-cell imaging in a panel of reporter cell lines
by
Chong, Yolanda T.
,
Van de Waeter, Jelle
,
Neefs, Jean-Marc
in
631/154
,
631/154/1435/2417
,
631/92/613
2020
Phenomic profiles are high-dimensional sets of readouts that can comprehensively capture the biological impact of chemical and genetic perturbations in cellular assay systems. Phenomic profiling of compound libraries can be used for compound target identification or mechanism of action (MoA) prediction and other applications in drug discovery. To devise an economical set of phenomic profiling assays, we assembled a library of 1,008 approved drugs and well-characterized tool compounds manually annotated to 218 unique MoAs, and we profiled each compound at four concentrations in live-cell, high-content imaging screens against a panel of 15 reporter cell lines, which expressed a diverse set of fluorescent organelle and pathway markers in three distinct cell lineages. For 41 of 83 testable MoAs, phenomic profiles accurately ranked the reference compounds (AUC-ROC ≥ 0.9). MoAs could be better resolved by screening compounds at multiple concentrations than by including replicates at a single concentration. Screening additional cell lineages and fluorescent markers increased the number of distinguishable MoAs but this effect quickly plateaued. There remains a substantial number of MoAs that were hard to distinguish from others under the current study’s conditions. We discuss ways to close this gap, which will inform the design of future phenomic profiling efforts.
Journal Article
Convergence of immune escape strategies highlights plasticity of SARS-CoV-2 spike
by
Bakhash, Shah A. Mohamed
,
Bakkers, Mark J. G.
,
Rutten, Lucy
in
Adaptation (Physiology)
,
Analysis
,
Antibodies
2023
The global spread of the SARS-CoV-2 virus has resulted in emergence of lineages which impact the effectiveness of immunotherapies and vaccines that are based on the early Wuhan isolate. All currently approved vaccines employ the spike protein S, as it is the target for neutralizing antibodies. Here we describe two SARS-CoV-2 isolates with unusually large deletions in the N-terminal domain (NTD) of the spike. Cryo-EM structural analysis shows that the deletions result in complete reshaping of the NTD supersite, an antigenically important region of the NTD. For both spike variants the remodeling of the NTD negatively affects binding of all tested NTD-specific antibodies in and outside of the NTD supersite. For one of the variants, we observed a P9L mediated shift of the signal peptide cleavage site resulting in the loss of a disulfide-bridge; a unique escape mechanism with high antigenic impact. Although the observed deletions and disulfide mutations are rare, similar modifications have become independently established in several other lineages, indicating a possibility to become more dominant in the future. The observed plasticity of the NTD foreshadows its broad potential for immune escape with the continued spread of SARS-CoV-2.
Journal Article
The Application of the Open Pharmacological Concepts Triple Store (Open PHACTS) to Support Drug Discovery Research
by
Brea, Jose
,
Digles, Daniela
,
Siebes, Ronald
in
Application programming interface
,
Bioinformatics
,
Biology and Life Sciences
2014
Integration of open access, curated, high-quality information from multiple disciplines in the Life and Biomedical Sciences provides a holistic understanding of the domain. Additionally, the effective linking of diverse data sources can unearth hidden relationships and guide potential research strategies. However, given the lack of consistency between descriptors and identifiers used in different resources and the absence of a simple mechanism to link them, gathering and combining relevant, comprehensive information from diverse databases remains a challenge. The Open Pharmacological Concepts Triple Store (Open PHACTS) is an Innovative Medicines Initiative project that uses semantic web technology approaches to enable scientists to easily access and process data from multiple sources to solve real-world drug discovery problems. The project draws together sources of publicly-available pharmacological, physicochemical and biomolecular data, represents it in a stable infrastructure and provides well-defined information exploration and retrieval methods. Here, we highlight the utility of this platform in conjunction with workflow tools to solve pharmacological research questions that require interoperability between target, compound, and pathway data. Use cases presented herein cover 1) the comprehensive identification of chemical matter for a dopamine receptor drug discovery program 2) the identification of compounds active against all targets in the Epidermal growth factor receptor (ErbB) signaling pathway that have a relevance to disease and 3) the evaluation of established targets in the Vitamin D metabolism pathway to aid novel Vitamin D analogue design. The example workflows presented illustrate how the Open PHACTS Discovery Platform can be used to exploit existing knowledge and generate new hypotheses in the process of drug discovery.
Journal Article
A Therapeutic Hepatitis B Virus DNA Vaccine Induces Specific Immune Responses in Mice and Non-Human Primates
2021
Despite the availability of an effective prophylactic vaccine for more than 30 years, nearly 300 million people worldwide are chronically infected with the hepatitis B virus (HBV), leading to 1 death every 30 s mainly from viral hepatitis-related cirrhosis and liver cancer. Chronic HBV patients exhibit weak, transient, or dysfunctional CD8+ T-cell responses to HBV, which contrasts with high CD8+ T-cell responses seen for resolvers of acute HBV infection. Therefore, a therapeutic DNA vaccine was designed, expressing both HBV core and polymerase proteins, and was sequence optimized to ensure high protein expression and secretion. Although the vaccine, administered intramuscularly via electroporation, had no effect on plasma viral parameters in a mouse model of persistent HBV infection, it did induce robust HBV-specific immune responses in healthy and adeno-associated hepatitis B virus (AAV-HBV) infected mice as well as in healthy non-human primates.
Journal Article
Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism
2014
Bedaquiline (BDQ), an ATP synthase inhibitor, is the first drug to be approved for treatment of multidrug-resistant tuberculosis in decades. Though BDQ has shown excellent efficacy in clinical trials, its early bactericidal activity during the first week of chemotherapy is minimal. Here, using microfluidic devices and time-lapse microscopy of
Mycobacterium tuberculosis
, we confirm the absence of significant bacteriolytic activity during the first 3–4 days of exposure to BDQ. BDQ-induced inhibition of ATP synthesis leads to bacteriostasis within hours after drug addition. Transcriptional and proteomic analyses reveal that
M. tuberculosis
responds to BDQ by induction of the dormancy regulon and activation of ATP-generating pathways, thereby maintaining bacterial viability during initial drug exposure. BDQ-induced bacterial killing is significantly enhanced when the mycobacteria are grown on non-fermentable energy sources such as lipids (impeding ATP synthesis via glycolysis). Our results show that BDQ exposure triggers a metabolic remodelling in mycobacteria, thereby enabling transient bacterial survival.
The delayed onset of bactericidal activity of the anti-tuberculosis antibiotic bedaquiline is puzzling. Here, Koul and colleagues show, using a multi-omics approach, that the drug triggers a metabolic remodelling in
Mycobacterium tuberculosis
that enables the pathogen’s transient survival.
Journal Article
Diarylquinoline Drug Active on the ATP Synthase of Mycobacterium tuberculosis
by
Zhu, Min
,
Truffot-Pernot, Chantal
,
Verhasselt, Peter
in
Adenosine triphosphatase
,
Amino Acid Sequence
,
Animals
2005
The incidence of tuberculosis has been increasing substantially on a worldwide basis over the past decade, but no tuberculosis-specific drugs have been discovered in 40 years. We identified a diarylquinoline, R207910, that potently inhibits both drug-sensitive and drug-resistant Mycobacterium tuberculosis in vitro (minimum inhibitory concentration 0.06 [micro]g/ml). In mice, R207910 exceeded the bactericidal activities of isoniazid and rifampin by at least 1 log unit. Substitution of drugs included in the World Health Organization's first-line tuberculosis treatment regimen (rifampin, isoniazid, and pyrazinamide) with R207910 accelerated bactericidal activity, leading to complete culture conversion after 2 months of treatment in some combinations. A single dose of R207910 inhibited mycobacterial growth for 1 week. Plasma levels associated with efficacy in mice were well tolerated in healthy human volunteers. Mutants selected in vitro suggest that the drug targets the proton pump of adenosine triphosphate (ATP) synthase.
Journal Article
The Need of Industry to Go FAIR
2020
The industry sector is a very large producer and consumer of data, and many
companies traditionally focused on production or manufacturing are now relying
on the analysis of large amounts of data to develop new products and services.
As many of the data sources needed are distributed and outside the company, FAIR
data will have a major impact, both by reducing the existing internal data silos
and by enabling the efficient integration with external (public and commercial)
data. Many companies are still in the early phases of internal data
“FAIRification”, providing opportunities for SMEs and academics to
apply and develop their expertise on FAIR data in collaborations and
public-private partnerships. For a global Internet of FAIR Data &
Services to thrive, also involving industry, professional tools and services are
essential. FAIR metrics and certifications on individuals, data, organizations,
and software, must ensure that data producers and consumers have independent
quality metrics on their data. In this opinion article we reflect on some
industry specific challenges of FAIR implementation to be dealt with when
choices are made regarding “Industry GOing FAIR”.
Journal Article
Pitfalls in applying text mining to scientific literature
2010
Text Mining requires 'education' at different levels: for providing information, to capture, to store and to retrieve that information, and to interpret results of the mining process.
Journal Article
The Application of the Open Pharmacological Concepts Triple Store
2014
Integration of open access, curated, high-quality information from multiple disciplines in the Life and Biomedical Sciences provides a holistic understanding of the domain. Additionally, the effective linking of diverse data sources can unearth hidden relationships and guide potential research strategies. However, given the lack of consistency between descriptors and identifiers used in different resources and the absence of a simple mechanism to link them, gathering and combining relevant, comprehensive information from diverse databases remains a challenge. The Open Pharmacological Concepts Triple Store (Open PHACTS) is an Innovative Medicines Initiative project that uses semantic web technology approaches to enable scientists to easily access and process data from multiple sources to solve real-world drug discovery problems. The project draws together sources of publicly-available pharmacological, physicochemical and biomolecular data, represents it in a stable infrastructure and provides well-defined information exploration and retrieval methods. Here, we highlight the utility of this platform in conjunction with workflow tools to solve pharmacological research questions that require interoperability between target, compound, and pathway data. Use cases presented herein cover 1) the comprehensive identification of chemical matter for a dopamine receptor drug discovery program 2) the identification of compounds active against all targets in the Epidermal growth factor receptor (ErbB) signaling pathway that have a relevance to disease and 3) the evaluation of established targets in the Vitamin D metabolism pathway to aid novel Vitamin D analogue design. The example workflows presented illustrate how the Open PHACTS Discovery Platform can be used to exploit existing knowledge and generate new hypotheses in the process of drug discovery.
Journal Article