Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
126 result(s) for "Negrini, Massimo"
Sort by:
P2X7 promotes metastatic spreading and triggers release of miRNA-containing exosomes and microvesicles from melanoma cells
Tumor growth and metastatic spreading are heavily affected by the P2X7 receptor as well as microvesicles and exosomes release into the tumor microenvironment. P2X7 receptor stimulation is known to trigger vesicular release from immune and central nervous system cells. However, P2X7 role in microvesicles and exosomes delivery from tumor cells was never analyzed in depth. Here we show that P2X7 is overexpressed in patients affected by metastatic malignant melanoma and that its expression closely correlates with reduced overall survival. Antagonism of melanoma cell-expressed P2X7 receptor inhibited in vitro anchorage-independent growth and migration and in vivo dissemination and lung metastasis formation. P2X7 stimulation triggered the release of miRNA-containing microvesicles and exosomes from melanoma cells, profoundly altering the nature of their miRNA content, as well as their dimensions and quantity. Among the more than 200 miRNAs that we found up-or-down-modulated for each vesicular fraction tested, we identified three miRNAs, miR-495-3p, miR-376c-3p, and miR-6730-3p, that were enriched in both the exosome and microvesicle fraction in a P2X7-dependent fashion. Interestingly, upon transfection, these miRNAs promoted melanoma cell growth or migration, and their vesicular release was minimized by P2X7 antagonism. Our data unveil an exosome/microvesicle and miRNA-dependent mechanism for the pro-metastatic activity of the P2X7 receptor and highlight this receptor as a suitable prognostic biomarker and therapeutic target in malignant melanoma.
Unraveling the role of microRNA/isomiR network in multiple primary melanoma pathogenesis
Malignant cutaneous melanoma (CM) is a potentially lethal form of skin cancer whose worldwide incidence has been constantly increasing over the past decades. During their lifetime, about 8% of CM patients will develop multiple primary melanomas (MPMs), usually at a young age and within 3 years from the first tumor/diagnosis. With the aim of improving our knowledge on MPM biology and pathogenesis, we explored the miRNome of 24 single and multiple primary melanomas, including multiple tumors from the same patient, using a small RNA-sequencing approach. From a supervised analysis, 22 miRNAs were differentially expressed in MPM compared to single CM, including key miRNAs involved in epithelial–mesenchymal transition. The first and second melanoma from the same patient presented a different miRNA profile. Ten miRNAs, including miR-25-3p, 149-5p, 92b-3p, 211-5p, 125a-5p, 125b-5p, 205-5p, 200b-3p, 21-5p, and 146a-5p, were further validated in 47 single and multiple melanoma samples. Pathway enrichment analysis of miRNA target genes revealed a more differentiated and less invasive status of MPMs compared to CMs. Bioinformatic analyses at the miRNA isoform (isomiR) level detected a panel of highly expressed isomiRs belonging to miRNA families implicated in human tumorigenesis, including miR-200, miR-30, and miR-10 family. Moreover, we identified hsa-miR-125a-5p|0|−2 isoform as tenfold over-represented in melanoma than the canonical form and differentially expressed in MPMs arising in the same patient. Target prediction analysis revealed that the miRNA shortening could change the pattern of target gene regulation, specifically in genes implicated in cell adhesion and neuronal differentiation. Overall, we provided a putative and comprehensive characterization of the miRNA/isomiR regulatory network of MPMs, highlighting mechanisms of tumor development and molecular features differentiating this subtype from single melanomas.
Circulating microRNAs, miR-939, miR-595, miR-519d and miR-494, Identify Cirrhotic Patients with HCC
The performance of circulating biomarkers for the diagnosis of hepatocellular carcinoma (HCC) is sub-optimal. In this study we tested circulating microRNAs as biomarkers for HCC in cirrhotic patients by performing a two stage study: a discovery phase conducted by microarray and a validation phase performed by qRT-PCR in an independent series of 118 patients. Beside miRNAs emerged from the discovery phase, miR-21, miR-221, miR-519d were also tested in the validation setting on the basis of literary and tissue findings. Deregulated microRNAs were assayed in HCC-derived cells in the intracellular compartment, cell culture supernatant and exosomal fraction. Serum and tissue microRNA levels were compared in 14 patients surgically treated for HCC. From the discovery study, it emerged that seven circulating microRNAs were differentially expressed in cirrhotic patients with and without HCC. In the validation set, miR-939, miR-595 and miR-519d were shown to differentiate cirrhotic patients with and without HCC. MiR-939 and miR-595 are independent factors for HCC. ROC curves of miR-939, miR-595 and miR-519d displayed that AUC was higher than AFP. An exosomal secretion of miR-519d, miR-21, miR-221 and miR-1228 and a correlation between circulating and tissue levels of miR-519d, miR-494 and miR-21 were found in HCC patients. Therefore, we show that circulating microRNAs deserve attention as non-invasive biomarkers in the diagnostic setting of HCC and that exosomal secretion contributes to discharging a subset of microRNAs into the extracellular compartment.
Circulating microRNAs as biomarkers for stratifying different phases of liver cancer progression and response to therapy
Hepatocellular carcinoma (HCC) is the most common liver cancer and is among the leading causes of cancer-related death worldwide. There is no reliable biomarker for the early diagnosis of HCC. Circulating microRNAs (miRNAs) have attracted attention as potential biomarkers of disease. By small-RNA next-generation sequencing, the analysis of serum miRNAs led to the identification of molecular signatures able to discriminate advanced HCC from early HCC (n = 246); advanced HCC from CIRRHOSIS (n = 299); advanced HCC from HEALTHY (n = 320); HEALTHY from early HCC (n = 343); and HEALTHY from CIRRHOSIS (n = 414). Cirrhotic patients and early HCC patients exhibited similar serum miRNA profiles, yet a small number of miRNAs (n = 57) were able to distinguish these two classes of patients. A second objective of the study was to identify serum miRNAs capable of predicting the response to therapy in patients with advanced HCC. All patients were treated with sorafenib as first-line therapy: 24 were nonresponsive and 24 responsive. Analysis of circulating miRNAs revealed a 54 miRNAs signature able to separate the two subgroups. This study suggested that circulating miRNAs could be useful biomarkers for monitoring patients with liver diseases ranging from cirrhosis to advanced HCC and possibly predicting susceptibility to first-line treatment based on sorafenib.
A MicroRNA Expression Signature of Human Solid Tumors Defines Cancer Gene Targets
Small noncoding microRNAs (miRNAs) can contribute to cancer development and progression and are differentially expressed in normal tissues and cancers. From a large-scale miRnome analysis on 540 samples including lung, breast, stomach, prostate, colon, and pancreatic tumors, we identified a solid cancer miRNA signature composed by a large portion of overexpressed miRNAs. Among these miRNAs are some with well characterized cancer association, such as miR-17-5p, miR-20a, miR-21, miR-92, miR-106a, and miR-155. The predicted targets for the differentially expressed miRNAs are significantly enriched for protein-coding tumor suppressors and oncogenes (P < 0.0001). A number of the predicted targets, including the tumor suppressors RB1 (Retinoblastoma 1) and TGFBR2 (transforming growth factor, beta receptor II) genes were confirmed experimentally. Our results indicate that miRNAs are extensively involved in cancer pathogenesis of solid tumors and support their function as either dominant or recessive cancer genes.
MiR-15a and miR-16-1 cluster functions in human leukemia
MicroRNAs (miRNAs) are short noncoding RNAs regulating gene expression that play roles in human diseases, including cancer. Each miRNA is predicted to regulate hundreds of transcripts, but only few have experimental validation. In chronic lymphocytic leukemia (CLL), the most common adult human leukemia, miR-15a and miR-16-1 are lost or down-regulated in the majority of cases. After our previous work indicating a tumor suppressor function of miR-15a/16-1 by targeting the BCL2 oncogene, here, we produced a high-throughput profiling of genes modulated by miR-15a/16-1 in a leukemic cell line model (MEG-01) and in primary CLL samples. By combining experimental and bioinformatics data, we identified a miR-15a/16-1-gene signature in leukemic cells. Among the components of the miR-15a/16-1 signature, we observed a statistically significant enrichment in AU-rich elements (AREs). By examining the Gene Ontology (GO) database, a significant enrichment in cancer genes (such as MCL1, BCL2, ETS1, or JUN) that directly or indirectly affect apoptosis and cell cycle was found.
miR-15 and miR-16 Induce Apoptosis by Targeting BCL2
Chronic lymphocytic leukemia (CLL) is the most common human leukemia and is characterized by predominantly nondividing malignant B cells overexpressing the antiapoptotic B cell lymphoma 2 (Bcl2) protein. miR-15a and miR-16-1 are deleted or down-regulated in the majority of CLLs. Here, we demonstrate that miR-15a and miR-16-1 expression is inversely correlated to Bcl2 expression in CLL and that both microRNAs negatively regulate Bcl2 at a posttranscriptional level. BCL2 repression by these microRNAs induces apoptopsis in a leukemic cell line model. Therefore, miR-15 and miR-16 are natural antisense Bcl2 interactors that could be used for therapy of Bcl2-overexpressing tumors.
MiR-494 induces metabolic changes through G6pc targeting and modulates sorafenib response in hepatocellular carcinoma
Background Metabolic reprogramming is a well-known marker of cancer, and it represents an early event during hepatocellular carcinoma (HCC) development. The recent approval of several molecular targeted agents has revolutionized the management of advanced HCC patients. Nevertheless, the lack of circulating biomarkers still affects patient stratification to tailored treatments. In this context, there is an urgent need for biomarkers to aid treatment choice and for novel and more effective therapeutic combinations to avoid the development of drug-resistant phenotypes. This study aims to prove the involvement of miR-494 in metabolic reprogramming of HCC, to identify novel miRNA-based therapeutic combinations and to evaluate miR-494 potential as a circulating biomarker. Methods Bioinformatics analysis identified miR-494 metabolic targets. QPCR analysis of glucose 6-phosphatase catalytic subunit (G6pc) was performed in HCC patients and preclinical models. Functional analysis and metabolic assays assessed G6pc targeting and miR-494 involvement in metabolic changes, mitochondrial dysfunction, and ROS production in HCC cells. Live-imaging analysis evaluated the effects of miR-494/G6pc axis in cell growth of HCC cells under stressful conditions. Circulating miR-494 levels were assayed in sorafenib-treated HCC patients and DEN-HCC rats. Results MiR-494 induced the metabolic shift of HCC cells toward a glycolytic phenotype through G6pc targeting and HIF-1A pathway activation. MiR-494/G6pc axis played an active role in metabolic plasticity of cancer cells, leading to glycogen and lipid droplets accumulation that favored cell survival under harsh environmental conditions. High miR-494 serum levels associated with sorafenib resistance in preclinical models and in a preliminary cohort of HCC patients. An enhanced anticancer effect was observed for treatment combinations between antagomiR-494 and sorafenib or 2-deoxy-glucose in HCC cells. Conclusions MiR-494/G6pc axis is critical for the metabolic rewiring of cancer cells and associates with poor prognosis. MiR-494 deserves attention as a candidate biomarker of likelihood of response to sorafenib to be tested in future validation studies. MiR-494 represents a promising therapeutic target for combination strategies with sorafenib or metabolic interference molecules for the treatment of HCC patients who are ineligible for immunotherapy.
Modulation of mismatch repair and genomic stability by miR-155
Inactivation of mismatch repair (MMR) is the cause of the common cancer predisposition disorder Lynch syndrome (LS), also known as hereditary nonpolyposis colorectal cancer (HNPCC), as well as 10–40% of sporadic colorectal, endometrial, ovarian, gastric, and urothelial cancers. Elevated mutation rates (mutator phenotype), including simple repeat instability [microsatellite instability (MSI)] are a signature of MMR defects. MicroRNAs (miRs) have been implicated in the control of critical cellular pathways involved in development and cancer. Here we show that overexpression of miR-155 significantly down-regulates the core MMR proteins, hMSH2, hMSH6, and hMLH1, inducing a mutator phenotype and MSI. An inverse correlation between the expression of miR-155 and the expression of MLH1 or MSH2 proteins was found in human colorectal cancer. Finally, a number of MSI tumors with unknown cause of MMR inactivation displayed miR-155 overexpression. These data provide support for miR-155 modulation of MMR as a mechanism of cancer pathogenesis.
microRNAs and Inflammatory Immune Response in SARS-CoV-2 Infection: A Narrative Review
The current SARS-CoV-2 pandemic has emerged as an international challenge with strong medical and socioeconomic impact. The spectrum of clinical manifestations of SARS-CoV-2 is wide, covering asymptomatic or mild cases up to severe and life-threatening complications. Critical courses of SARS-CoV-2 infection are thought to be driven by the so-called “cytokine storm”, derived from an excessive immune response that induces the release of proinflammatory cytokines and chemokines. In recent years, non-coding RNAs (ncRNAs) emerged as potential diagnostic and therapeutic biomarkers in both inflammatory and infectious diseases. Therefore, the identification of SARS-CoV-2 miRNAs and host miRNAs is an important research topic, investigating the host–virus crosstalk in COVID-19 infection, trying to answer the pressing question of whether miRNA-based therapeutics can be employed to tackle SARS-CoV-2 complications. In this review, we aimed to directly address ncRNA role in SARS-CoV-2-immune system crosstalk upon COVID-19 infection, particularly focusing on inflammatory pathways and cytokine storm syndromes.