Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
2
result(s) for
"Nehemias Ulloa"
Sort by:
Collaborative efforts to forecast seasonal influenza in the United States, 2015–2016
by
Madhav Erraguntla
,
Joceline Lega
,
Naren Ramakrishnan
in
631/114/2397
,
692/308/174
,
692/699/255/1578
2019
Since 2013, the Centers for Disease Control and Prevention (CDC) has hosted an annual influenza season forecasting challenge. The 2015–2016 challenge consisted of weekly probabilistic forecasts of multiple targets, including fourteen models submitted by eleven teams. Forecast skill was evaluated using a modified logarithmic score. We averaged submitted forecasts into a mean ensemble model and compared them against predictions based on historical trends. Forecast skill was highest for seasonal peak intensity and short-term forecasts, while forecast skill for timing of season onset and peak week was generally low. Higher forecast skill was associated with team participation in previous influenza forecasting challenges and utilization of ensemble forecasting techniques. The mean ensemble consistently performed well and outperformed historical trend predictions. CDC and contributing teams will continue to advance influenza forecasting and work to improve the accuracy and reliability of forecasts to facilitate increased incorporation into public health response efforts.
Journal Article
Bayesian Hierarchical Modeling for Disease Outbreaks
2019
Influenza is a common illness which affects many people every year. In the past few years, we have seen the great impact influenza can have on the population and the health care system. For most, influenza will result in a minor inconvenience, but influenza can lead to serious health problems including death especially among the young, the elderly and expecting women. The Centers for Disease Control and Prevention (CDC) has created the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet), a network of outpatient healthcare providers throughout the United States of America and its territories who have agreed to report the weekly number of patients they see in their office showing influenza-like illness (ILI) and the total number of patients seen for any reason. Though ILINet is viewed as the gold standard for estimating influenza activity, it is often reported at a one or two week lag. Internet searches can provide a better real time view of influenza activity though they can be biased. In this thesis, we develop multiple models using only ILINet data then develop a method for these models to incorporate a second data source through data fusion. The first model employs a Bayesian hierarchical structure with the mean modeled by an asymmetrical Gaussian functional form. Multiple hierarchical structures are compared to see which fits the data best. When forecasting, all hierarchical structures preform better than the independent model. The second model takes a functional data approach and uses functional principal component analysis to model and forecast the influenza season. Shrinkage distributions are used to choose the number of principal components. A hierarchical structure is created for the shrinkage distributions. Again, we find the hierarchical structures help in providing better forecasts. The forecasts are able to predict the peak week and peak percentage with little data from the forecasted season. Lastly, we preform a simulation study to see how adding a second data source such as Google search data can benefit the forecasting abilities in both of these models. We found that both models can benefit from a second source of data even if it biased. The benefit is most noticeable when forecasting around the peak of the influenza season.
Dissertation