Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
10 result(s) for "Neitzel, Philipp"
Sort by:
Distribution, associations and role in the biological carbon pump of Pyrosoma atlanticum (Tunicata, Thaliacea) off Cabo Verde, NE Atlantic
Gelatinous zooplankton are increasingly acknowledged to contribute significantly to the carbon cycle worldwide, yet many taxa within this diverse group remain poorly studied. Here, we investigate the pelagic tunicate Pyrosoma atlanticum in the waters surrounding the Cabo Verde Archipelago. By using a combination of pelagic and benthic in situ observations, sampling, and molecular genetic analyses (barcoding, eDNA), we reveal that: P. atlanticum abundance is most likely driven by local island-induced productivity, that it substantially contributes to the organic carbon export flux and is part of a diverse range of biological interactions. Downward migrating pyrosomes actively transported an estimated 13% of their fecal pellets below the mixed layer, equaling a carbon flux of 1.96–64.55 mg C m −2  day −1 . We show that analysis of eDNA can detect pyrosome material beyond their migration range, suggesting that pyrosomes have ecological impacts below the upper water column. Moribund P. atlanticum colonies contributed an average of 15.09 ± 17.89 (s.d.) mg C m −2 to the carbon flux reaching the island benthic slopes. Our pelagic in situ observations further show that P. atlanticum formed an abundant substrate in the water column (reaching up to 0.28 m 2 substrate area per m 2 ), with animals using pyrosomes for settlement, as a shelter and/or a food source. In total, twelve taxa from four phyla were observed to interact with pyrosomes in the midwater and on the benthos.
Jellyfish and Ctenophores Around Gotland in the Baltic Sea—Local Data Contributing to Global Assessments
In this study, we investigate the diversity and spatiotemporal distribution of gelatinous zooplankton (GZ) in the central Baltic Sea (coastal waters of Gotland and adjacent Eastern and Western Gotland Basins), a region characterised by low salinity and ecological sensitivity. Despite the Baltic Sea being the largest brackish water body globally, knowledge about its GZ, specifically, medusae and ctenophores, is limited. Our research synthesises the existing literature, open-access data, and local reports. Three to five GZ species occur within the studied area, with the common jellyfish Aurelia aurita dominating. Peak sightings of A. aurita happen between July and October, whereas the ctenophore Mertensia ovum and scyphozoan Cyanea capillata display sporadic occurrences. We identify notable gaps in understanding GZ phenology and food web impacts due to historical neglect and insufficient monitoring, particularly under low-salinity conditions (between 5 and 8), which restricts species richness. Jellyfish and ctenophores fall under the Essential Ocean Variable (EOV) “Zooplankton Biomass and Diversity” governed by the Global Ocean Observing System, UNESCO-IOC. EOVs are an approach for globally usable data and adhere to Findable, Accessible, Interoperable, and Reusable (FAIR) data principles. Including EOVs in routine collection and reporting would significantly enhance regional and global understanding, contributing to a holistic ecosystem view. Thus, we advocate for global ocean observation frameworks to comprehensively monitor GZ populations and their ecological, biogeochemical, and socioeconomic roles. Our findings serve as a crucial step towards understanding the implications of climate change for GZ assemblages in the Baltic Sea, promoting a holistic approach to marine ecosystem management.
Pelagic deep-sea fauna observed on video transects in the southern Norwegian Sea
Observations of the diversity, distribution and abundance of pelagic fauna are absent for many ocean regions in the Atlantic, but baseline data are required to detect changes in communities as a result of climate change. Gelatinous fauna are increasingly recognized as vital players in oceanic food webs, but sampling these delicate organisms in nets is challenging. Underwater (in situ) observations have provided unprecedented insights into mesopelagic communities in particular for abundance and distribution of gelatinous fauna. In September 2018, we performed horizontal video transects (50–1200 m) using the pelagic in situ observation system during a research cruise in the southern Norwegian Sea. Annotation of the video recordings resulted in 12 abundant and 7 rare taxa. Chaetognaths, the trachymedusa Aglantha digitale and appendicularians were the three most abundant taxa. The high numbers of fishes and crustaceans in the upper 100 m was likely the result of vertical migration. Gelatinous zooplankton included ctenophores (lobate ctenophores, Beroe spp., Euplokamis sp., and an undescribed cydippid) as well as calycophoran and physonect siphonophores. We discuss the distributions of these fauna, some of which represent the first record for the Norwegian Sea.
The Pelagic In situ Observation System (PELAGIOS) to reveal biodiversity, behavior, and ecology of elusive oceanic fauna
There is a need for cost-efficient tools to explore deep-ocean ecosystems to collect baseline biological observations on pelagic fauna (zooplankton and nekton) and establish the vertical ecological zonation in the deep sea. The Pelagic In situ Observation System (PELAGIOS) is a 3000 m rated slowly (0.5 m s−1) towed camera system with LED illumination, an integrated oceanographic sensor set (CTD-O2) and telemetry allowing for online data acquisition and video inspection (low definition). The high-definition video is stored on the camera and later annotated using software and related to concomitantly recorded environmental data. The PELAGIOS is particularly suitable for open-ocean observations of gelatinous fauna, which is notoriously under-sampled by nets and/or destroyed by fixatives. In addition to counts, diversity, and distribution data as a function of depth and environmental conditions (T, S, O2), in situ observations of behavior, orientation, and species interactions are collected. Here, we present an overview of the technical setup of the PELAGIOS as well as example observations and analyses from the eastern tropical North Atlantic. Comparisons to data from the Multiple Opening/Closing Net and Environmental Sensing System (MOCNESS) net sampling and data from the Underwater Vision Profiler (UVP) are provided and discussed.
Optical observations and spatio-temporal projections of gelatinous zooplankton in the Fram Strait, a gateway to a changing Arctic Ocean
Global warming causes profound environmental shifts in the Arctic Ocean, altering the composition and structure of communities. In the Fram Strait, a transitional zone between the North-Atlantic and Arctic Ocean, climate change effects are particularly pronounced and accelerated due to an increased inflow of warm Atlantic water. Gelatinous zooplankton are known as key predators, consuming a great variety of prey and playing an important role in marine ecosystems. Insufficient knowledge of how gelatinous zooplankton are affected by environmental change has resulted in a notable gap in the understanding of the future state of Arctic ecosystems. We analyzed the diversity and abundance of gelatinous zooplankton down to 2600 m depth and established the first regional baseline dataset using optical observations obtained by the towed underwater camera system PELAGIOS (Pelagic In situ Observation System). Our data estimate the abundance of 20 taxa of gelatinous zooplankton. The most abundant taxa belong to the family of Rhopalonematidae, mainly consisting of Aglantha digitale and Sminthea arctica , and the suborder Physonectae. Using the observational data, we employed a joint species distribution modelling approach to better understand their distributional patterns. Variance partitioning over the explanatory variables showed that depth and temperature explained a substantial amount of variation for most of the taxa, suggesting that these parameters drive diversity and distribution. Spatial distribution modelling revealed that the highest abundance and diversity of jellyfish are expected in the marginal sea-ice zones. By coupling the model with climate scenarios of environmental changes, we were able to project potential changes in the spatial distribution and composition of gelatinous communities from 2020 to 2050 (during the summer season). The near-future projections confirmed that with further temperature increases, gelatinous zooplankton communities in the Fram Strait would become less diverse but more abundant. Among taxa of the Rhopalonematidae family, the abundance of Aglantha digitale in the entire water column would increase by 2%, while a loss of up to 60% is to be expected for Sminthea arctica by 2050. The combination of in situ observations and species distribution modelling shows promise as a tool for predicting gelatinous zooplankton community shifts in a changing ocean.
An Integrative Assessment Combining Deep-Sea Net Sampling, in situ Observations and Environmental DNA Analysis Identifies Cabo Verde as a Cephalopod Biodiversity Hotspot in the Atlantic Ocean
The deep sea is among the largest, most biologically diverse, yet least-explored ecosystems on Earth. Baseline information on deep-sea biodiversity is crucial for understanding ecosystem functioning and for detecting community changes. Here, we established a baseline of cephalopod community composition and distribution off Cabo Verde, an archipelago in the eastern tropical Atlantic. This baseline served to test the hypothesis that Cabo Verde is biogeographically separated from other Macaronesian archipelagos and allowed the identification of cephalopod species which may play a role in the Macaronesian carbon cycle and oceanic food web. To investigate cephalopod community composition, this study used 746 individual cephalopods obtained by nets (0–1000 m) and 52 cephalopod encounters during video surveys with either towed camera (0–2500 m) or manned submersible (0–375 m). Additionally, environmental DNA (eDNA) metabarcoding on 105 seawater samples (50–2500 m), using an 18S rRNA universal cephalopod primer pair, and a species-specific primer pair for Taningia danae resulted in the detection of 32 cephalopod taxa. When combined, the three methods detected a total of 87 taxa, including 47 distinct species. Each method contributed between 7 and 54% of taxa that were not detected by the other methods, indicating that multiple methodological approaches are needed for optimal deep-sea cephalopod biodiversity assessments. This study documents the occurrences of six species and three genera for the first time in waters surrounding Cabo Verde. Video surveys and eDNA analysis detected Taningia danae recurrently (100–2500 m). eDNA metabarcoding proved to be a powerful tool for cephalopod biodiversity monitoring and complementary to traditional sampling methods. When also including literature records, Cabo Verde hosts at least 102 cephalopod taxa including 30 families and 64 benthic and pelagic species. The total number and species composition of Cabo Verde cephalopods is similar to the Canary Islands and Azores, two known cephalopod biodiversity hotspots, but the Cabo Verde octopus fauna seems to differ. Due to a range of life history characteristics, we hypothesize that the squids Taningia danae (Octopoteuthidae) and Sthenoteuthis pteropus (Ommastrephidae) are important in the carbon cycle of Macaronesia. As a cephalopod biodiversity hotspot Cabo Verde could function as a model region to investigate cephalopod biology and ecology in a rapidly changing Atlantic Ocean.
Distribution and abundance of net-captured calycophoran siphonophores and other gelatinous zooplankton in the Sargasso Sea European eel spawning area
Gelatinous zooplankton (GZ) such as medusae, ctenophores, siphonophores, pyrosomes and salps are important components of oceanic pelagic communities and small calycophoran siphonophores (CS) are typically abundant at shallow depths. The Sargasso Sea spawning area of the Atlantic catadromous freshwater eels has a regular pattern of shallow autumn to spring temperature fronts. There is limited information about the southern Sargasso Sea GZ fauna, and it is not known which species are distributed across these frontal zones. Plankton samples from a survey of larval European eel ( Anguilla anguilla ) abundance in March and April 2017 using an Isaacs-Kidd Midwater Trawl (0–300 m, 35 stations, three transects) were used to examine the distribution and abundance of net-captured CS and other GZ species in relation to oceanographic characteristics. More than 2200 specimens of 15 taxa were sub-sampled, with five CS ( Abylopsis tetragona , A. eschscholtzii , Chelophyes appendiculata , Eudoxoides spiralis and E. mitra ) dominating catches at every station. GZ were most abundant around the 22 and 24 °C isotherms, and higher abundances of CS in the north were correlated with lower water temperature. The widespread presence of CS across the European eel spawning area is consistent with a recent study detecting their DNA sequences in the gut contents of young eel larvae collected in the Sargasso Sea, suggesting CS material was either eaten directly or as part of ingested marine snow particles. The present study shows that both types of organisms occupy the southern Sargasso Sea during the European eel spawning season.
In situ observations show vertical community structure of pelagic fauna in the eastern tropical North Atlantic off Cape Verde
Distribution patterns of fragile gelatinous fauna in the open ocean remain scarcely documented. Using epi-and mesopelagic video transects in the eastern tropical North Atlantic, which features a mild but intensifying midwater oxygen minimum zone (OMZ), we established one of the first regional observations of diversity and abundance of large gelatinous zooplankton. We quantified the day and night vertical distribution of 46 taxa in relation to environmental conditions. While distribution may be driven by multiple factors, abundance peaks of individual taxa were observed in the OMZ core, both above and below the OMZ, only above, or only below the OMZ whereas some taxa did not have an obvious distribution pattern. In the eastern eropical North Atlantic, OMZ expansion in the course of global climate change may detrimentally impact taxa that avoid low oxygen concentrations ( Beroe , doliolids), but favour taxa that occur in the OMZ ( Lilyopsis , phaeodarians, Cydippida, Colobonema , Haliscera conica and Halitrephes) as their habitat volume might increase. While future efforts need to focus on physiology and taxonomy of pelagic fauna in the study region, our study presents biodiversity and distribution data for the regional epi- and mesopelagic zones of Cape Verde providing a regional baseline to monitor how climate change may impact the largest habitat on the planet, the deep pelagic realm.
Targeting Altered Energy Metabolism in Colorectal Cancer: Oncogenic Reprogramming, the Central Role of the TCA Cycle and Therapeutic Opportunities
Colorectal cancer (CRC) is among the most frequent cancer entities worldwide. Multiple factors are causally associated with CRC development, such as genetic and epigenetic alterations, inflammatory bowel disease, lifestyle and dietary factors. During malignant transformation, the cellular energy metabolism is reprogrammed in order to promote cancer cell growth and proliferation. In this review, we first describe the main alterations of the energy metabolism found in CRC, revealing the critical impact of oncogenic signaling and driver mutations in key metabolic enzymes. Then, the central role of mitochondria and the tricarboxylic acid (TCA) cycle in this process is highlighted, also considering the metabolic crosstalk between tumor and stromal cells in the tumor microenvironment. The identified cancer-specific metabolic transformations provided new therapeutic targets for the development of small molecule inhibitors. Promising agents are in clinical trials and are directed against enzymes of the TCA cycle, including isocitrate dehydrogenase, pyruvate dehydrogenase kinase, pyruvate dehydrogenase complex (PDC) and α-ketoglutarate dehydrogenase (KGDH). Finally, we focus on the α-lipoic acid derivative CPI-613, an inhibitor of both PDC and KGDH, and delineate its anti-tumor effects for targeted therapy.
Minimum Participation Rules for the Provision of Public Goods
This paper considers the endogenous formation of an institution to provide a public good. If the institution governs only its members, players have an incentive to free ride on the institution formation of others and the social dilemma is simply shifted to a higher level. Addressing this second-order social dilemma, we study the effectiveness of three different minimum participation requirements: 1. full participation / unanimity rule; 2. partial participation; 3. unanimity first and in case of failure partial participation. While unanimity is most effective once established, one might suspect that a weaker minimum participation rule is preferable in practice as it might facilitate the formation of the institution. The data of our laboratory experiment do not support this latter view, though. In fact, weakening the participation requirement does not increase the number of implemented institutions. Thus, we conclude that the most effective participation requirement is the unanimity rule which leaves no room for free riding on either level of the social dilemma.