Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
363
result(s) for
"Nelson, Randall"
Sort by:
Development and evaluation of SoySNP50K, a high-density genotyping array for soybean
2013
The objective of this research was to identify single nucleotide polymorphisms (SNPs) and to develop an Illumina Infinium BeadChip that contained over 50,000 SNPs from soybean (Glycine max L. Merr.). A total of 498,921,777 reads 35-45 bp in length were obtained from DNA sequence analysis of reduced representation libraries from several soybean accessions which included six cultivated and two wild soybean (G. soja Sieb. et Zucc.) genotypes. These reads were mapped to the soybean whole genome sequence and 209,903 SNPs were identified. After applying several filters, a total of 146,161 of the 209,903 SNPs were determined to be ideal candidates for Illumina Infinium II BeadChip design. To equalize the distance between selected SNPs, increase assay success rate, and minimize the number of SNPs with low minor allele frequency, an iteration algorithm based on a selection index was developed and used to select 60,800 SNPs for Infinium BeadChip design. Of the 60,800 SNPs, 50,701 were targeted to euchromatic regions and 10,000 to heterochromatic regions of the 20 soybean chromosomes. In addition, 99 SNPs were targeted to unanchored sequence scaffolds. Of the 60,800 SNPs, a total of 52,041 passed Illumina's manufacturing phase to produce the SoySNP50K iSelect BeadChip. Validation of the SoySNP50K chip with 96 landrace genotypes, 96 elite cultivars and 96 wild soybean accessions showed that 47,337 SNPs were polymorphic and generated successful SNP allele calls. In addition, 40,841 of the 47,337 SNPs (86%) had minor allele frequencies ≥ 10% among the landraces, elite cultivars and the wild soybean accessions. A total of 620 and 42 candidate regions which may be associated with domestication and recent selection were identified, respectively. The SoySNP50K iSelect SNP beadchip will be a powerful tool for characterizing soybean genetic diversity and linkage disequilibrium, and for constructing high resolution linkage maps to improve the soybean whole genome sequence assembly.
Journal Article
Increasing CO2 threatens human nutrition
by
Schwartz, Joel
,
Seneweera, Saman
,
Usui, Yasuhiro
in
704/106/694/2739/2807
,
Air - analysis
,
Atmosphere - chemistry
2014
Dietary deficiencies of zinc and iron are a major global public health problem. An estimated two billion people suffer these deficiencies causing a loss of 63 million life years annually. Most of these people depend upon grains and legumes as their primary dietary source of zinc and iron. This manuscript reports findings from the analysis of 540 pairs of crop samples grown at contemporary and elevated [CO2] from six different FACE experiments involving six food crops. We tested the nutrient concentrations of the edible portions of rice (Oryza sativa, 18 cultivars), wheat (Triticum aestivum, 8 cultivars), maize (Zea mays, 2 cultivars), soybeans (Glycine max, 7 cultivars), field peas (Pisum sativum, 4 cultivars) and sorghum (Sorghum bicolor, 1 cultivar). In all six experiments, the elevated [CO2] was in the range of 550-584 ppm. Each crop sample grown at elevated [CO2] was paired with an identical cultivar grown under the same conditions but at contemporary [CO2]. Our main outcomes were fractional changes in concentrations of the nutrients between samples grown at elevated and contemporary [CO2] levels, estimated using a linear mixed effects statistical model. We found that elevated [CO2] was associated with significant decreases in the concentrations of zinc and iron in all C3 grasses and legumes. For example, in wheat grains grown at elevated [CO2] compared with contemporary [CO2], zinc decreased 9.6% and iron decreased 5.2%. We also found that elevated [CO2] was associated with lower protein in C3 grasses with a 6.5% decrease in wheat grains and a 7.9% (95% CI: -8.9, -6.9) decrease in rice grains. Elevated [CO2] showed no significant effect on protein in C3 legumes or C4 crops. Response differences between cultivars suggest breeding crops for reduced sensitivity to elevations in atmospheric [CO2]. Such breeding efforts may partly address the new challenges to global health that these findings highlight.
Journal Article
Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm
by
Wu, Jixiang
,
Jiang, Guo-Liang
,
Cregan, Perry B
in
Analysis
,
Animal Genetics and Genomics
,
Arabidopsis - genetics
2015
Background
Soybean (
Glycine max
) is a photoperiod-sensitive and self-pollinated species. Days to flowering (DTF) and maturity (DTM), duration of flowering-to-maturity (DFTM) and plant height (PH) are crucial for soybean adaptability and yield. To dissect the genetic architecture of these agronomically important traits, a population consisting of 309 early maturity soybean germplasm accessions was genotyped with the Illumina Infinium SoySNP50K BeadChip and phenotyped in multiple environments. A genome-wide association study (GWAS) was conducted using a mixed linear model that involves both relative kinship and population structure.
Results
The linkage disequilibrium (LD) decayed slowly in soybean, and a substantial difference in LD pattern was observed between euchromatic and heterochromatic regions. A total of 27, 6, 18 and 27 loci for DTF, DTM, DFTM and PH were detected via GWAS, respectively. The
Dt1
gene was identified in the locus strongly associated with both DTM and PH. Ten candidate genes homologous to
Arabidopsis
flowering genes were identified near the peak single nucleotide polymorphisms (SNPs) associated with DTF. Four of them encode MADS-domain containing proteins. Additionally, a pectin lyase-like gene was also identified in a major-effect locus for PH where LD decayed rapidly.
Conclusions
This study identified multiple new loci and refined chromosomal regions of known loci associated with DTF, DTM, DFTM and/or PH in soybean. It demonstrates that GWAS is powerful in dissecting complex traits and identifying candidate genes although LD decayed slowly in soybean. The loci and trait-associated SNPs identified in this study can be used for soybean genetic improvement, especially the major-effect loci associated with PH could be used to improve soybean yield potential. The candidate genes may serve as promising targets for studies of molecular mechanisms underlying the related traits in soybean.
Journal Article
Artificial selection of mutations in two nearby genes gave rise to shattering resistance in soybean
2024
Resistance to pod shattering is a key domestication-related trait selected for seed production in many crops. Here, we show that the transition from shattering in wild soybeans to shattering resistance in cultivated soybeans resulted from selection of mutations within the coding sequences of two nearby genes -
Sh1
and
Pdh1. Sh1
encodes a C2H2-like zinc finger transcription factor that promotes shattering by repressing
SHAT1-5
expression, thereby reducing the secondary wall thickness of fiber cap cells in the abscission layers of pod sutures, while
Pdh1
encodes a dirigent protein that orchestrates asymmetric lignin distribution in inner sclerenchyma, creating torsion in pod walls that facilitates shattering. Integration analyses of quantitative trait locus mapping, genome-wide association studies, and allele distribution in representative soybean germplasm suggest that these two genes are primary modulators underlying this domestication trait. Our study thus provides comprehensive understanding regarding the genetic, molecular, and cellular bases of shattering resistance in soybeans.
Resistance to pod shattering in crops is typically modulated by major loci each underpinned by a single gene. Here, the authors show that the transition from shattering in wild soybean to shattering resistance in cultivated soybean is underlain by selection of mutations within two neighboring genes.
Journal Article
Artificial selection for determinate growth habit in soybean
2010
Determinacy is an agronomically important trait associated with the domestication in soybean (Glycine max). Most soybean cultivars are classifiable into indeterminate and determinate growth habit, whereas Glycine soja, the wild progenitor of soybean, is indeterminate. Indeterminate (Dt1/Dt1) and determinate (dt1/dt1) genotypes, when mated, produce progeny that segregate in a monogenic pattern. Here, we show evidence that Dt1 is a homolog (designated as GmTfl1) of Arabidopsis terminal flower 1 (TFL1), a regulatory gene encoding a signaling protein of shoot meristems. The transition from indeterminate to determinate phenotypes in soybean is associated with independent human selections of four distinct single-nucleotide substitutions in the GmTfl1 gene, each of which led to a single amino acid change. Genetic diversity of a minicore collection of Chinese soybean landraces assessed by simple sequence repeat (SSR) markers and allelic variation at the GmTfl1 locus suggest that human selection for determinacy took place at early stages of landrace radiation. The GmTfl1 allele introduced into a determinate-type (tfl1/tfl1) Arabidopsis mutants fully restored the wild-type (TFL1/TFL1) phenotype, but the Gmtfl1 allele in tfl1/tfl1 mutants did not result in apparent phenotypic change. These observations indicate that GmTfl1 complements the functions of TFL1 in ARABIDOPSIS: However, the GmTfl1 homeolog, despite its more recent divergence from GmTfl1 than from Arabidopsis TFL1, appears to be sub- or neo-functionalized, as revealed by the differential expression of the two genes at multiple plant developmental stages and by allelic analysis at both loci.
Journal Article
Fingerprinting Soybean Germplasm and Its Utility in Genomic Research
2015
The United States Department of Agriculture, Soybean Germplasm Collection includes 18,480 domesticated soybean and 1168 wild soybean accessions introduced from 84 countries or developed in the United States. This collection was genotyped with the SoySNP50K BeadChip containing greater than 50K single-nucleotide polymorphisms. Redundant accessions were identified in the collection, and distinct genetic backgrounds of soybean from different geographic origins were observed that could be a unique resource for soybean genetic improvement. We detected a dramatic reduction of genetic diversity based on linkage disequilibrium and haplotype structure analyses of the wild, landrace, and North American cultivar populations and identified candidate regions associated with domestication and selection imposed by North American breeding. We constructed the first soybean haplotype block maps in the wild, landrace, and North American cultivar populations and observed that most recombination events occurred in the regions between haplotype blocks. These haplotype maps are crucial for association mapping aimed at the identification of genes controlling traits of economic importance. A case-control association test delimited potential genomic regions along seven chromosomes that most likely contain genes controlling seed weight in domesticated soybean. The resulting dataset will facilitate germplasm utilization, identification of genes controlling important traits, and will accelerate the creation of soybean varieties with improved seed yield and quality.
Journal Article
Genome-wide association study of seed protein, oil and amino acid contents in soybean from maturity groups I to IV
2019
Key messageGenomic regions associated with seed protein, oil and amino acid contents were identified by genome-wide association analyses. Geographic distributions of haplotypes indicate scope of improvement of these traits.Soybean [Glycine max (L.) Merr.] protein and oil are used worldwide in feed, food and industrial materials. Increasing seed protein and oil contents is important; however, protein content is generally negatively correlated with oil content. We conducted a genome-wide association study using phenotypic data collected from five environments for 621 accessions in maturity groups I–IV and 34,014 markers to identify quantitative trait loci (QTL) for seed content of protein, oil and several essential amino acids. Three and five genomic regions were associated with seed protein and oil contents, respectively. One, three, one and four genomic regions were associated with cysteine, methionine, lysine and threonine content (g kg−1 crude protein), respectively. As previously shown, QTL on chromosomes 15 and 20 were associated with seed protein and oil contents, with both exhibiting opposite effects on the two traits, and the chromosome 20 QTL having the most significant effect. A multi-trait mixed model identified trait-specific QTL. A QTL on chromosome 5 increased oil with no effect on protein content, and a QTL on chromosome 10 increased protein content with little effect on oil content. The chromosome 10 QTL co-localized with maturity gene E2/GmGIa. Identification of trait-specific QTL indicates feasibility to reduce the negative correlation between protein and oil contents. Haplotype blocks were defined at the QTL identified on chromosomes 5, 10, 15 and 20. Frequencies of positive effect haplotypes varied across maturity groups and geographic regions, providing guidance on which alleles have potential to contribute to soybean improvement for specific regions.
Journal Article
GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean
2015
Jianxin Ma and colleagues report the identification of a gene variant selected for during the domestication of soybean that causes permeable seed coats, in contrast to the hard seed coats of its wild ancestors. The identified gene,
GmHs1-1
, is predicted to encode a calcineurin-like metallophosphatase, although its cellular function remains unknown.
Loss of seed-coat impermeability was essential in the domestication of many leguminous crops to promote the production of their highly nutritious seeds. Here we show that seed-coat impermeability in wild soybean is controlled by a single gene,
GmHs1-1
, which encodes a calcineurin-like metallophosphoesterase transmembrane protein.
GmHs1-1
is primarily expressed in the Malpighian layer of the seed coat and is associated with calcium content. The transition from impermeability to permeability in domesticated soybean was caused by artificial selection of a point mutation in
GmHs1-1
. Interestingly, a number of soybean landraces evaded selection for permeability because of an alternative selection for seed-coat cracking that also enables seed imbibition. Despite the single origin of the mutant allele
Gmhs1-1
, the distribution pattern of allelic variants in the context of soybean population structure and the detected signature of genomic introgression between wild and cultivated soybeans suggest that
Gmhs1-1
may have experienced reselection for seed-coat permeability.
Journal Article
The Association of Human Apolipoprotein C-III Sialylation Proteoforms with Plasma Triglycerides
by
Koska, Juraj
,
Walker, Ryan W.
,
Nedelkov, Dobrin
in
Adolescent
,
Apolipoprotein C-III
,
Apolipoprotein C-III - metabolism
2015
Apolipoprotein C-III (apoC-III) regulates triglyceride (TG) metabolism. In plasma, apoC-III exists in non-sialylated (apoC-III0a without glycosylation and apoC-III0b with glycosylation), monosialylated (apoC-III1) or disialylated (apoC-III2) proteoforms. Our aim was to clarify the relationship between apoC-III sialylation proteoforms with fasting plasma TG concentrations.
In 204 non-diabetic adolescent participants, the relative abundance of apoC-III plasma proteoforms was measured using mass spectrometric immunoassay.
Compared with the healthy weight subgroup (n = 16), the ratios of apoC-III0a, apoC-III0b, and apoC-III1 to apoC-III2 were significantly greater in overweight (n = 33) and obese participants (n = 155). These ratios were positively correlated with BMI z-scores and negatively correlated with measures of insulin sensitivity (Si). The relationship of apoC-III1 / apoC-III2 with Si persisted after adjusting for BMI (p = 0.02). Fasting TG was correlated with the ratio of apoC-III0a / apoC-III2 (r = 0.47, p<0.001), apoC-III0b / apoC-III2 (r = 0.41, p<0.001), apoC-III1 / apoC-III2 (r = 0.43, p<0.001). By examining apoC-III concentrations, the association of apoC-III proteoforms with TG was driven by apoC-III0a (r = 0.57, p<0.001), apoC-III0b (r = 0.56. p<0.001) and apoC-III1 (r = 0.67, p<0.001), but not apoC-III2 (r = 0.006, p = 0.9) concentrations, indicating that apoC-III relationship with plasma TG differed in apoC-III2 compared with the other proteoforms.
We conclude that apoC-III0a, apoC-III0b, and apoC-III1, but not apoC- III2 appear to be under metabolic control and associate with fasting plasma TG. Measurement of apoC-III proteoforms can offer insights into the biology of TG metabolism in obesity.
Journal Article
Impacts of Genetic Bottlenecks on Soybean Genome Diversity
by
Shoemaker, Randy C.
,
Hyten, David L.
,
Nelson, Randall L.
in
Alleles
,
Biological Sciences
,
Breeding
2006
Soybean has undergone several genetic bottlenecks. These include domestication in Asia to produce numerous Asian landraces, introduction of relatively few landraces to North America, and then selective breeding over the past 75 years. It is presumed that these three human-mediated events have reduced genetic diversity. We sequenced 111 fragments from 102 genes in four soybean populations representing the populations before and after genetic bottlenecks. We show that soybean has lost many rare sequence variants and has undergone numerous allele frequency changes throughout its history. Although soybean genetic diversity has been eroded by human selection after domestication, it is notable that modern cultivars have retained 72% of the sequence diversity present in the Asian landraces but lost 79% of rare alleles (frequency ≤0.10) found in the Asian landraces. Simulations indicated that the diversity lost through the genetic bottlenecks of introduction and plant breeding was mostly due to the small number of Asian introductions and not the artificial selection subsequently imposed by selective breeding. The bottleneck with the most impact was domestication; when the low sequence diversity present in the wild species was halved, 81% of the rare alleles were lost, and 60% of the genes exhibited evidence of significant allele frequency changes.
Journal Article