Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
29 result(s) for "Neutze, Jocelyn"
Sort by:
Accuracy of PECARN, CATCH, and CHALICE head injury decision rules in children: a prospective cohort study
Clinical decision rules can help to determine the need for CT imaging in children with head injuries. We aimed to validate three clinical decision rules (PECARN, CATCH, and CHALICE) in a large sample of children. In this prospective observational study, we included children and adolescents (aged <18 years) with head injuries of any severity who presented to the emergency departments of ten Australian and New Zealand hospitals. We assessed the diagnostic accuracy of PECARN (stratified into children aged <2 years and ≥2 years), CATCH, and CHALICE in predicting each rule-specific outcome measure (clinically important traumatic brain injury [TBI], need for neurological intervention, and clinically significant intracranial injury, respectively). For each calculation we used rule-specific predictor variables in populations that satisfied inclusion and exclusion criteria for each rule (validation cohort). In a secondary analysis, we compiled a comparison cohort of patients with mild head injuries (Glasgow Coma Scale score 13–15) and calculated accuracy using rule-specific predictor variables for the standardised outcome of clinically important TBI. This study is registered with the Australian New Zealand Clinical Trials Registry, number ACTRN12614000463673. Between April 11, 2011, and Nov 30, 2014, we analysed 20 137 children and adolescents attending with head injuries. CTs were obtained for 2106 (10%) patients, 4544 (23%) were admitted, 83 (<1%) underwent neurosurgery, and 15 (<1%) died. PECARN was applicable for 4011 (75%) of 5374 patients younger than 2 years and 11 152 (76%) of 14 763 patients aged 2 years and older. CATCH was applicable for 4957 (25%) patients and CHALICE for 20 029 (99%). The highest point validation sensitivities were shown for PECARN in children younger than 2 years (100·0%, 95% CI 90·7–100·0; 38 patients identified of 38 with outcome [38/38]) and PECARN in children 2 years and older (99·0%, 94·4–100·0; 97/98), followed by CATCH (high-risk predictors only; 95·2%; 76·2–99·9; 20/21; medium-risk and high-risk predictors 88·7%; 82·2–93·4; 125/141) and CHALICE (92·3%, 89·2–94·7; 370/401). In the comparison cohort of 18 913 patients with mild injuries, sensitivities for clinically important TBI were similar. Negative predictive values in both analyses were higher than 99% for all rules. The sensitivities of three clinical decision rules for head injuries in children were high when used as designed. The findings are an important starting point for clinicians considering the introduction of one of the rules. National Health and Medical Research Council, Emergency Medicine Foundation, Perpetual Philanthropic Services, WA Health Targeted Research Funds, Townsville Hospital Private Practice Fund, Auckland Medical Research Foundation, A + Trust.
Sepsis epidemiology in Australian and New Zealand children (SENTINEL): protocol for a multicountry prospective observational study
IntroductionSepsis affects 25.2 million children per year globally and causes 3.4 million deaths, with an annual cost of hospitalisation in the USA of US$7.3 billion. Despite being common, severe and expensive, therapies and outcomes from sepsis have not substantially changed in decades. Variable case definitions, lack of a reference standard for diagnosis and broad spectrum of disease hamper efforts to evaluate therapies that may improve sepsis outcomes. This landscape analysis of community-acquired childhood sepsis in Australia and New Zealand will characterise the burden of disease, including incidence, severity, outcomes and cost. Sepsis diagnostic criteria and risk stratification tools will be prospectively evaluated. Sepsis therapies, quality of care, parental awareness and understanding of sepsis and parent-reported outcome measures will be described. Understanding these aspects of sepsis care is fundamental for the design and conduct of interventional trials to improve childhood sepsis outcomes.Methods and analysisThis prospective observational study will include children up to 18 years of age presenting to 12 emergency departments with suspected sepsis within the Paediatric Research in Emergency Departments International Collaborative network in Australia and New Zealand. Presenting characteristics, management and outcomes will be collected. These will include vital signs, serum biomarkers, clinician assessment of severity of disease, intravenous fluid administration for the first 24 hours of hospitalisation, organ support therapies delivered, antimicrobial use, microbiological diagnoses, hospital and intensive care unit length-of-stay, mortality censored at hospital discharge or 30 days from enrolment (whichever comes first) and parent-reported outcomes 90 days from enrolment. We will use these data to determine sepsis epidemiology based on existing and novel diagnostic criteria. We will also validate existing and novel sepsis risk stratification criteria, characterise antimicrobial stewardship, guideline adherence, cost and report parental awareness and understanding of sepsis and parent-reported outcome measures.Ethics and disseminationEthics approval was received from the Royal Children’s Hospital of Melbourne, Australia Human Research Ethics Committee (HREC/69948/RCHM-2021). This included incorporated informed consent for follow-up. The findings will be disseminated in a peer-reviewed journal and at academic conferences.Trial registration numberACTRN12621000920897; Pre-results.
External validation of the Scandinavian guidelines for management of minimal, mild and moderate head injuries in children
Background Clinical decision rules (CDRs) aid in the management of children with traumatic brain injury (TBI). Recently, the Scandinavian Neurotrauma Committee (SNC) has published practical, evidence-based guidelines for children with Glasgow Coma Scale (GCS) scores of 9–15. This study aims to validate these guidelines and to compare them with other CDRs. Methods A large prospective cohort of children (< 18 years) with TBI of all severities, from ten Australian and New Zealand hospitals, was used to assess the SNC guidelines. Firstly, a validation study was performed according to the inclusion and exclusion criteria of the SNC guideline. Secondly, we compared the accuracy of SNC, CATCH, CHALICE and PECARN CDRs in patients with GCS 13–15 only. Diagnostic accuracy was calculated for outcome measures of need for neurosurgery, clinically important TBI (ciTBI) and brain injury on CT. Results The SNC guideline could be applied to 19,007/20,137 of patients (94.4%) in the validation process. The frequency of ciTBI decreased significantly with stratification by decreasing risk according to the SNC guideline. Sensitivities for the detection of neurosurgery, ciTBI and brain injury on CT were 100.0% (95% CI 89.1–100.0; 32/32), 97.8% (94.5–99.4; 179/183) and 95% (95% CI 91.6–97.2; 262/276), respectively, with a CT/admission rate of 42% (mandatory CT rate of 5%, 18% CT or admission and 19% only admission). Four patients with ciTBI were missed; none needed specific intervention. In the homogenous comparison cohort of 18,913 children, the SNC guideline performed similar to the PECARN CDR, when compared with the other CDRs. Conclusion The SNC guideline showed a high accuracy in a large external validation cohort and compares well with published CDRs for the management of paediatric TBI.
Treatment patterns and frequency of key outcomes in acute severe asthma in children: a Paediatric Research in Emergency Departments International Collaborative (PREDICT) multicentre cohort study
RationaleSevere acute paediatric asthma may require treatment escalation beyond systemic corticosteroids, inhaled bronchodilators and low-flow oxygen. Current large asthma datasets report parenteral therapy only.ObjectivesTo identify the use and type of escalation of treatment in children presenting to hospital with acute severe asthma.MethodsRetrospective cohort study of children with an emergency department diagnosis of asthma or wheeze at 18 Australian and New Zealand hospitals. The main outcomes were use and type of escalation treatment (defined as any of intensive care unit admission, nebulised magnesium, respiratory support or parenteral bronchodilator treatment) and hospital length of stay (LOS).Measurements and main resultsOf 14 029 children (median age 3 (IQR 1–3) years; 62.9% male), 1020 (7.3%, 95% CI 6.9% to 7.7%) had treatment escalation. Children with treatment escalation had a longer LOS (44.2 hours, IQR 27.3–63.2 hours) than children without escalation 6.7 hours, IQR 3.5–16.3 hours; p<0.001). The most common treatment escalations were respiratory support alone (400; 2.9%, 95% CI 2.6% to 3.1%), parenteral bronchodilator treatment alone (380; 2.7%, 95% CI 2.5% to 3.0%) and both respiratory support and parenteral bronchodilator treatment (209; 1.5%, 95% CI 1.3% to 1.7%). Respiratory support was predominantly nasal high-flow therapy (99.0%). The most common intravenous medication regimens were: magnesium alone (50.4%), magnesium and aminophylline (24.6%) and magnesium and salbutamol (10.0%).ConclusionsOverall, 7.3% children with acute severe asthma received some form of escalated treatment, with 4.2% receiving parenteral bronchodilators and 4.3% respiratory support. There is wide variation treatment escalation.
A multicentre randomised controlled trial of levetiracetam versus phenytoin for convulsive status epilepticus in children (protocol): Convulsive Status Epilepticus Paediatric Trial (ConSEPT) - a PREDICT study
Background Convulsive status epilepticus (CSE) is the most common life-threatening childhood neurological emergency. Despite this, there is a lack of high quality evidence supporting medication use after first line benzodiazepines, with current treatment protocols based solely on non-experimental evidence and expert opinion. The current standard of care, phenytoin, is only 60% effective, and associated with considerable adverse effects. A newer anti-convulsant, levetiracetam, can be given faster, is potentially more efficacious, with a more tolerable side effect profile. The primary aim of the study presented in this protocol is to determine whether intravenous (IV) levetiracetam or IV phenytoin is the better second line treatment for the emergency management of CSE in children. Methods/Design 200 children aged between 3 months and 16 years presenting to 13 emergency departments in Australia and New Zealand with CSE, that has failed to stop with first line benzodiazepines, will be enrolled into this multicentre open randomised controlled trial. Participants will be randomised to 40 mg/kg IV levetiracetam infusion over 5 min or 20 mg/kg IV phenytoin infusion over 20 min. The primary outcome for the study is clinical cessation of seizure activity five minutes following the completion of the infusion of the study medication. Blinded confirmation of the primary outcome will occur with the primary outcome assessment being video recorded and assessed by a primary outcome assessment team blinded to treatment allocation. Secondary outcomes include: Clinical cessation of seizure activity at two hours; Time to clinical seizure cessation; Need for rapid sequence induction; Intensive care unit (ICU) admission; Serious adverse events; Length of Hospital/ICU stay; Health care costs; Seizure status/death at one-month post discharge. Discussion This paper presents the background, rationale, and design for a randomised controlled trial comparing levetiracetam to phenytoin in children presenting with CSE in whom benzodiazepines have failed. This study will provide the first high quality evidence for management of paediatric CSE post first-line benzodiazepines. Trial registration Prospectively registered with the Australian and New Zealand Clinical Trial Registry (ANZCTR): ACTRN12615000129583 (11/2/2015). UTN U1111–1144-5272. ConSEPT protocol version 4 (12/12/2014).
Multicentre, randomised trial to investigate early nasal high—flow therapy in paediatric acute hypoxaemic respiratory failure: a protocol for a randomised controlled trial—a Paediatric Acute respiratory Intervention Study (PARIS 2)
IntroductionAcute hypoxaemic respiratory failure (AHRF) in children is the most frequent reason for non-elective hospital admission. During the initial phase, AHRF is a clinical syndrome defined for the purpose of this study by an oxygen requirement and caused by pneumonia, lower respiratory tract infections, asthma or bronchiolitis. Up to 20% of these children with AHRF can rapidly deteriorate requiring non-invasive or invasive ventilation. Nasal high-flow (NHF) therapy has been used by clinicians for oxygen therapy outside intensive care settings to prevent escalation of care. A recent randomised trial in infants with bronchiolitis has shown that NHF therapy reduces the need to escalate therapy. No similar data is available in the older children presenting with AHRF. In this study we aim to investigate in children aged 1 to 4 years presenting with AHRF if early NHF therapy compared with standard-oxygen therapy reduces hospital length of stay and if this is cost-effective compared with standard treatment.Methods and analysisThe study design is an open-labelled randomised multicentre trial comparing early NHF and standard-oxygen therapy and will be stratified by sites and into obstructive and non-obstructive groups. Children aged 1 to 4 years (n=1512) presenting with AHRF to one of the participating emergency departments will be randomly allocated to NHF or standard-oxygen therapy once the eligibility criteria have been met (oxygen requirement with transcutaneous saturation <92%/90% (dependant on hospital standard threshold), diagnosis of AHRF, admission to hospital and tachypnoea ≥35 breaths/min). Children in the standard-oxygen group can receive rescue NHF therapy if escalation is required. The primary outcome is hospital length of stay. Secondary outcomes will include length of oxygen therapy, proportion of intensive care admissions, healthcare resource utilisation and associated costs. Analyses will be conducted on an intention-to-treat basis.Ethics and disseminationEthics approval has been obtained in Australia (HREC/15/QRCH/159) and New Zealand (HDEC 17/NTA/135). The trial commenced recruitment in December 2017. The study findings will be submitted for publication in a peer-reviewed journal and presented at relevant conferences. Authorship of all publications will be decided by mutual consensus of the research team.Trial registration numberACTRN12618000210279
A Randomized Trial of High-Flow Oxygen Therapy in Infants with Bronchiolitis
In a multicenter, randomized, controlled trial, infants with bronchiolitis needing oxygen therapy received high-flow or standard-flow oxygen. High flow resulted in significantly lower escalation and treatment-failure rates than standard oxygen therapy.
Levetiracetam versus phenytoin for second-line treatment of convulsive status epilepticus in children (ConSEPT): an open-label, multicentre, randomised controlled trial
Phenytoin is the current standard of care for second-line treatment of paediatric convulsive status epilepticus after failure of first-line benzodiazepines, but is only effective in 60% of cases and is associated with considerable adverse effects. A newer anticonvulsant, levetiracetam, can be given more quickly, is potentially more efficacious, and has a more tolerable adverse effect profile. We aimed to determine whether phenytoin or levetiracetam is the superior second-line treatment for paediatric convulsive status epilepticus. ConSEPT was an open-label, multicentre, randomised controlled trial conducted in 13 emergency departments in Australia and New Zealand. Children aged between 3 months and 16 years, with convulsive status epilepticus that failed first-line benzodiazepine treatment, were randomly assigned (1:1) using a computer-generated permuted block (block sizes 2 and 4) randomisation sequence, stratified by site and age (≤5 years, >5 years), to receive 20 mg/kg phenytoin (intravenous or intraosseous infusion over 20 min) or 40 mg/kg levetiracetam (intravenous or intraosseous infusion over 5 min). The primary outcome was clinical cessation of seizure activity 5 min after the completion of infusion of the study drug. Analysis was by intention to treat. This trial is registered with the Australian and New Zealand Clinical Trials Registry, number ACTRN12615000129583. Between March 19, 2015, and Nov 29, 2017, 639 children presented to participating emergency departments with convulsive status epilepticus; 127 were missed, and 278 did not meet eligibility criteria. The parents of one child declined to give consent, leaving 233 children (114 assigned to phenytoin and 119 assigned to levetiracetam) in the intention-to-treat population. Clinical cessation of seizure activity 5 min after completion of infusion of study drug occurred in 68 (60%) patients in the phenytoin group and 60 (50%) patients in the levetiracetam group (risk difference −9·2% [95% CI −21·9 to 3·5]; p=0·16). One participant in the phenytoin group died at 27 days because of haemorrhagic encephalitis; this death was not thought to be due to the study drug. There were no other serious adverse events. Levetiracetam is not superior to phenytoin for second-line management of paediatric convulsive status epilepticus. Health Research Council of New Zealand, A+ Trust, Emergency Medicine Foundation, Townsville Hospital Private Practice Fund, Eric Ormond Baker Charitable Fund, and Princess Margaret Hospital Foundation.
A prospective randomised trial comparing nasogastric with intravenous hydration in children with bronchiolitis (protocol) The comparative rehydration in bronchiolitis study (CRIB)
Background Bronchiolitis is the most common reason for admission of infants to hospital in developed countries. Fluid replacement therapy is required in about 30% of children admitted with bronchiolitis. There are currently two techniques of fluid replacement therapy that are used with the same frequency-intravenous (IV) or nasogastric (NG). The evidence to determine the optimum route of hydration therapy for infants with bronchiolitis is inadequate. This randomised trial will be the first to provide good quality evidence of whether nasogastric rehydration (NGR) offers benefits over intravenous rehydration (IVR) using the clinically relevant continuous outcome measure of duration of hospital admission. Methods/Design A prospective randomised multi-centre trial in Australia and New Zealand where children between 2 and 12 months of age with bronchiolitis, needing non oral fluid replacement, are randomised to receive either intravenous (IV) or nasogastric (NG) rehydration. 750 patients admitted to participating hospitals will be recruited, and will be followed daily during the admission and by telephone 1 week after discharge. Patients with chronic respiratory, cardiac, or neurological disease; choanal atresia; needing IV fluid resuscitation; needing an IV for other reasons, and those requiring CPAP or ventilation are excluded. The primary endpoint is duration of hospital admission. Secondary outcomes are complications, need for ICU admission, parental satisfaction, and an economic evaluation. Results will be analysed using t-test for continuous data, and chi squared for categorical data. Non parametric data will be log transformed. Discussion This trial will define the role of NGR and IVR in bronchiolitis Trail registration The trial is registered with the Australian and New Zealand Clinical Trials Registry - ACTRN12605000033640
First-line oxygen therapy with high-flow in bronchiolitis is not cost saving for the health service
BackgroundBronchiolitis is the most common reason for hospital admission in infants. High-flow oxygen therapy has emerged as a new treatment; however, the cost-effectiveness of using it as first-line therapy is unknown.ObjectiveTo compare the cost of providing high-flow therapy as a first-line therapy compared with rescue therapy after failure of standard oxygen in the management of bronchiolitis.MethodsA within-trial economic evaluation from the health service perspective using data from a multicentre randomised controlled trial for hypoxic infants (≤12 months) admitted to hospital with bronchiolitis in Australia and New Zealand. Intervention costs, length of hospital and intensive care stay and associated costs were compared for infants who received first-line treatment with high-flow therapy (early high-flow, n=739) or for infants who received standard oxygen and optional rescue high-flow (rescue high-flow, n=733). Costs were applied using Australian costing sources and are reported in 2016–2017 AU$.ResultsThe incremental cost to avoid one treatment failure was AU$1778 (95% credible interval (CrI) 207 to 7096). Mean cost of bronchiolitis treatment including intervention costs and costs associated with length of stay was AU$420 (95% CrI −176 to 1002) higher per infant in the early high-flow group compared with the rescue high-flow group. There was an 8% (95% CrI 7.5 to 8.6) likelihood of the early high-flow oxygen therapy being cost saving.ConclusionsThe use of high-flow oxygen as initial therapy for respiratory failure in infants with bronchiolitis is unlikely to be cost saving to the health system, compared with standard oxygen therapy with rescue high-flow.