Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
22 result(s) for "Nganga, Fredrick"
Sort by:
Antibiotic quality and use practices amongst dairy farmers and drug retailers in central Kenyan highlands
Understanding antibiotic use in dairy systems is critical to guide antimicrobial stewardship programs. We investigated antibiotic use practices in small-holder dairy farms, antibiotic quality, and antimicrobial resistance (AMR) awareness among veterinary drug retailers in a mixed farming community in the central Kenyan highlands. Data were collected from 248 dairy farms and 72 veterinary drug stores between February 2020 and October 2021. A scale was developed to measure knowledge about AMR and antibiotic use using item response theory, and regression models were used to evaluate factors associated with antibiotic use and AMR knowledge. The active pharmaceutical ingredient (API) content of 27 antibiotic samples was determined using high-performance liquid chromatography (HPLC). The presence and levels of 11 antibiotic residues in 108 milk samples collected from the study farms were also investigated using liquid chromatography tandem mass spectrometry (LC–MS/MS). Almost all farms (98.8%, n = 244) reported using antibiotics at least once in the last year, mostly for therapeutic reasons (35.5%). The most used antibiotics were tetracycline (30.6%), penicillin (16.7%), and sulfonamide (9.4%), either individually or in combination, and predominantly in the injectable form. Larger farm size (OR = 1.02, p < 0.001) and history of vaccination use (OR = 1.17, p < 0.001) were significantly associated with a higher frequency of antibiotic use. Drug retailers who advised on animal treatments had a significantly higher mean knowledge scores than those who only sold drugs. We found that 44.4% (12/27) of the tested antibiotics did not meet the United States Pharmacopeial test specifications (percentage of label claim). We detected nine antibiotics in milk, including oxytetracycline, sulfamethoxazole, and trimethoprim. However, only three samples exceeded the maximum residue limits set by the Codex Alimentarius Commission. Our findings indicate that antibiotics of poor quality are accessible and used in small-holder dairy systems, which can be found in milk. These results will aid future investigations on how to promote sustainable antibiotic use practices in dairy systems.
Antibiotic ecotoxicity and resistance risks in resource-constrained chicken and pig farming environments
Antimicrobial resistance (AMR) data from agroecosystems in low- and middle-income countries is limited. We surveyed chicken ( n  = 52) and pig ( n  = 47) farms in Kenya to understand AMR in animal-environment pathways. Using LC-MS/MS, we validated the methods for analyzing eight common antibiotics and quantified the associated risks. Chicken compost (25.8%, n  = 97/376) had the highest antibiotics prevalence, followed by pig manure-fertilized soils (23.1%, n  = 83/360). The average antibiotic concentration was 63.4 µg/kg, which is below the environmentally relevant threshold (100 µg/kg), except for trimethoprim (221.4 µg/kg) among antibiotics and pig manure-fertilized soils (129.3 µg/kg) across sample types. Similarly, the average AMR risk quotient (RQ) was low (RQ < 0.1), except for trimethoprim and sulfamethoxazole (RQ ≥ 1). Ecotoxicity and AMR risks increased with flock size and the number of antibiotics used by pigs. Continuous environmental monitoring and large-scale studies on antibiotic contamination are crucial for evidence-based pollution control and the effective mitigation of environmental AMR.
Genetic Profiling of Aspergillus Isolates with Varying Aflatoxin Production Potential from Different Maize-Growing Regions of Kenya
Highly toxigenic strains of Aspergillus flavus have been reported to frequently contaminate maize, causing fatal aflatoxin poisoning in Kenya. To gain insights into the environmental and genetic factors that influence toxigenicity, fungi (n = 218) that were culturally identified as A. flavus were isolated from maize grains samples (n = 120) from three regions of Kenya. The fungi were further characterized to confirm their identities using a PCR-sequence analysis of the internal transcribed spacer (ITS) region of rDNA which also revealed all of them to be A. flavus. A subset of 72 isolates representing ITS sequence-based phylogeny cluster and the agroecological origin of maize samples was constituted for subsequent analysis. The analysis of partial calmodulin gene sequences showed that the subset consisted of A. flavus (87%) and Aspergillus minisclerotigenes (13%). No obvious association was detected between the presence of seven aflatoxin biosynthesis genes and fungal species or region. However, the presence of the aflD and aflS genes showed some association with aflatoxin production. The assessment of toxigenicity showed higher aflatoxin production potential in A. minisclerotigenes isolates. Given that A. minisclerotigenes were mainly observed in maize samples from Eastern Kenya, a known aflatoxin hotspot, we speculate that production of copious aflatoxin is an adaptative trait of this recently discovered species in the region.
Multi-Environmental Evaluation of Protein Content and Yield Stability among Tropical Soybean Genotypes Using GGE Biplot Analysis
The yield and protein performance in a soybean genotype result from its interaction with the prevailing environmental conditions. This makes selecting the best genotypes under varied target production environments more complex. This study’s objectives were to determine protein content and protein stability of 30 elite soybean genotypes in major soybean-growing areas of Uganda, assess the yield performance and stability in soybeans and determine the relationship between the protein content and grain yield in soybeans. The genotypes were planted in a randomized complete block design of three replications for six seasons across eight locations in Uganda. Genotype and genotype-by-environment (GGE) biplot analyses classified the test locations into three mega-environments for soybean protein and grain yields. Genotype NII X GC 20.3 had the highest mean protein content of 43.0%, and BSPS 48A-9-2 and BSPS 48A-28 were superior for the mean grain yield (1207 kg ha−1). Bulindi was the most discriminating and representative test environment for soybean yield. A weak and negative correlation (r = −0.1**, d.f. = 29) was detected between the protein content (%) and yield (kg ha−1). The highest-yielding genotypes BSPS 48A-9-2, BSPS 48A-31, and Nam II × GC 44.2 are recommended for further evaluation under farmers’ production conditions for selection and release as new soybean varieties in Uganda.
Phytochemicals in Leaves and Roots of Selected Kenyan Orange Fleshed Sweet Potato (OFSP) Varieties
This study reports the inherent phytochemical contents in leaves and roots of nine sweet potato varieties from Kenya. Results indicated that vitamin C content varied significantly (P<0.05) among the sweet potato varieties regardless of the plant part, leaves having significantly (P<0.05) higher levels than in the roots. Total flavonoids and phenolic compounds differed significantly (P<0.05) among varieties, higher values were found in leaves than in roots. Flavonoid contents in roots ranged from below detectable limits (Whitesp) to 25.8 mg CE/100 g (SPK031), while in leaves it ranged from 4097 to 7316 mg CE/100 g in SPK4 and Kenspot 5, respectively. Phenolic content was below detectable limits in the roots of whitesp but it was in substantial amounts in orange fleshed varieties. The β-carotene content was significantly (P<0.05) higher in leaves (16.43–34.47 mg/100 g dry weight) than in roots (not detected—11.1 mg/100 g dry weight). Total and phytic phosphorus were directly correlated with phytate contents in leaves and the roots. Tannins and soluble oxalates varied significantly (P<0.05) with variety and plant part being higher in leaves. The current information is important for ration formulations and dietary recommendations utilizing sweet potato leaves and roots. Future studies on effects of processing methods on these phytochemicals are recommended.
Assessment of Fungal Contamination in Fish Feed from the Lake Victoria Basin, Uganda
bstract The emergence of commercial fish farming has stimulated the establishment of fish feed factories in Uganda. However, no information is available on the safety of the feed, mainly due to lack of mycotoxin testing facilities and weak regulatory systems. A study was carried out to examine fungal colonization and mycotoxin contamination in fish feed samples (n = 147) of different types collected from nine fish farms (n = 81) and seven fish feed factories (n = 66) in the Lake Victoria Basin (LVB). Fungi were isolated in potato dextrose agar, grouped into morphotypes and representative isolates from each morphotype were identified based on the internal transcribed spacer (ITS) region of ribosomal DNA sequences. Aflatoxin B1 (AFB1) and total fumonisin (combinations of B1, B2 and B3; hereinafter named fumonisin) levels in feed samples were determined by enzyme-linked immunosorbent assay (ELISA). A wide range of fungi, including toxigenic Aspergillus flavus and Fusarium verticillioides, were isolated from the fish feed samples. AFB1 was detected in 48% of the factory samples and in 63% of the farm samples, with toxin levels <40 and >400 µg/kg, respectively. Similarly, 31% of the factory samples and 29% of the farm samples had fumonisin contamination ranging between 0.1 and 4.06 mg/kg. Pellets and powder had higher mycotoxin contamination compared to other commercially available fish feed types. This study shows AFB1 as a potential fish feed safety issue in the LVB and suggests a need for more research on mycotoxin residues in fish fillets.
Milk fatty acid variability and association with polymorphisms in SCD1 and DGAT1 genes in White Fulani and Borgou cattle breeds
The stearoyl-CoA desaturase 1 (SCD1) A293V and acyl CoA: diacylglycerol acyltransferase 1 (DGAT1) K232A polymorphisms have been associated with significant variation in bovine milk fatty acid composition and unsaturation indices in western cattle breeds. This study aimed to estimate the milk fatty acid variability in indigenous Borgou and White Fulani cattle breeds of Benin, and the effects of the SCD1 A293V and DGAT1 K232A polymorphisms on milk and fatty acid composition and unsaturation indices. Thus, 85 Borgou and 96 White Fulani cows were genotyped for the SCD1 A293V and DGAT1 K232A polymorphisms and their milk and fatty acid composition and unsaturation indices were determined. Borgou presented milk with higher linoleic acid (P < 0.001), oleic acid (P < 0.05), C18 index (P < 0.001), total unsaturation index (P < 0.05), and lower total saturated fatty acid (SFA) compared to White Fulani. The SCD1 VV genotype was associated with higher protein and lactose contents in White Fulani (P < 0.05). In Borgou, the SCD1 AV genotype was associated with higher C14 and total unsaturation indices (P < 0.01), while the SCD1 V allele was associated with decrease in C14 index (P < 0.05). In White Fulani, the SCD1 VV genotype was associated with lower C18:1 cis-9 content (P < 0.05) while the DGAT1 K allele was associated with increased total SFA (P < 0.05), and decreased C18 index (P < 0.05), total unsaturation index (P < 0.01) and total monounsaturated fatty acid (P < 0.01). The SCD1 A293V and DGAT1 K232A may serve as genetic markers to improve milk fatty acid traits in Borgou and White Fulani breeds.
Multiple Mycotoxins in Kenyan Rice
Multiple mycotoxins were tested in milled rice samples (n = 200) from traders at different milling points within the Mwea Irrigation Scheme in Kenya. Traders provided the names of the cultivar, village where paddy was cultivated, sampling locality, miller, and month of paddy harvest between 2018 and 2019. Aflatoxin, citrinin, fumonisin, ochratoxin A, diacetoxyscirpenol, T2, HT2, and sterigmatocystin were analyzed using ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS). Deoxynivalenol was tested using enzyme-linked immunosorbent assay (ELISA). Mycotoxins occurred in ranges and frequencies in the following order: sterigmatocystin (0–7 ppb; 74.5%), aflatoxin (0–993 ppb; 55.5%), citrinin (0–9 ppb; 55.5%), ochratoxin A (0–110 ppb; 30%), fumonisin (0–76 ppb; 26%), diacetoxyscirpenol (0–24 ppb; 20.5%), and combined HT2 + T2 (0–62 ppb; 14.5%), and deoxynivalenol was detected in only one sample at 510 ppb. Overall, low amounts of toxins were observed in rice with a low frequency of samples above the regulatory limits for aflatoxin, 13.5%; ochratoxin A, 6%; and HT2 + T2, 0.5%. The maximum co-contamination was for 3.5% samples with six toxins in different combinations. The rice cultivar, paddy environment, time of harvest, and millers influenced the occurrence of different mycotoxins. There is a need to establish integrated approaches for the mitigation of mycotoxin accumulation in the Kenyan rice.
Processing methods affect phytochemical contents in products prepared from orange‐fleshed sweetpotato leaves and roots
Phytochemicals enhance human health by acting antagonistically on incidences of cancer and other chronic diseases. They are considered indispensable in a variety of nutraceutical, pharmaceuticals, and medicinal and cosmetic applications. This study evaluated the effects of common processing methods on inherent phytochemical content in the roots and leaves of orange‐fleshed sweetpotato (OFSP) varieties called Kabode and SPK031. Yellosp and Whitesp, which are local sweetpotato varieties, were also included as check for roots and leaves, respectively. The sweetpotato products prepared for phytochemical analysis were boiling roots and leaves, frying chips and crisps, baking bread (for roots only), and fermenting and dehydrating leaves. Phytochemicals that were assessed included vitamin C, total phenolics and flavonoids, tannins, phytates, and soluble oxalates. Results indicated that retention of vitamin C was highest in boiled roots (85%–95%), followed by fries (71%–94%) and crisps (44%–76%), whereas the least retention was in bread (4%–11%) and leaves (0%–27%). Total phenolics, flavonoids, and antioxidant activity in leaves significantly (p < .05) varied with the type of processing. Higher retention of these phytochemicals was observed in processed roots but was lowest in bread. Boiling retained more than 100% of all carotenoids, while fermenting and drying the leaves retained 58–62 and 22%–48%, respectively. Frying retained more than 100% of the β‐carotene in the roots, while boiling retained 96%–100%. All processing methods significantly (p < .05) reduced antinutrients in leaves and roots. Fermentation of leaves had higher reduction of oxalates, tannins, and phytates, while boiling had the least effect. It is concluded that traditional boiling enhances phytochemical retention in roots but degrades most of them in leaves. Vitamin C content (dry weight basis) in raw and processed leaves products of three sweetpotato varieties in Kenya. The bars indicate standard error of means.
Association Mapping of Candidate Genes Associated with Iron and Zinc Content in Rice (Oryza sativa L.) Grains
Micronutrient deficiencies, particularly of iron (Fe) and zinc (Zn), in the diet contribute to health issues and hidden hunger. Enhancing the Fe and Zn content in globally staple food crops like rice is necessary to address food malnutrition. A Genome-Wide Association Study (GWAS) was conducted using 85 diverse rice accessions from the Democratic Republic of Congo (DRC) to identify genomic regions associated with grain Fe and Zn content. The Fe content ranged from 0.95 to 8.68 mg/100 g on a dry weight basis (dwb) while Zn content ranged from 0.87 to 3.8 mg/100 g (dwb). Using MLM and FarmCPU models, we found 10 significant SNPs out of which one SNP on chromosome 11 was associated with the variation in Fe content and one SNP on chromosome 4 was associated with the Zn content, and both were commonly detected by the two models. Candidate genes belonging to transcription regulator activities, including the bZIP family genes and MYB family genes, as well as transporter activities involved in Fe and Zn homeostasis were identified in the vicinity of the SNP markers and selected. The identified SNP markers hold promise for marker-assisted selection in rice breeding programs aimed at enhancing Fe and Zn content in rice. This study provides valuable insights into the genetic factors controlling Fe and Zn uptake and their transport and accumulation in rice, offering opportunities for developing biofortified rice varieties to combat malnutrition among rice consumers.