Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
12 result(s) for "Ngo, Jacky Chi Ki"
Sort by:
Identification of influenza polymerase inhibitors targeting C-terminal domain of PA through surface plasmon resonance screening
Currently, many strains of influenza A virus have developed resistance against anti-influenza drugs, and it is essential to find new chemicals to combat this virus. The influenza polymerase with three proteins, PA, PB1 and PB2, is a crucial component of the viral ribonucleoprotein (RNP) complex. Here, we report the identification of a hit compound 221 by surface plasmon resonance (SPR) direct binding screening on the C-terminal of PA (PAC). Compound 221 can subdue influenza RNP activities and attenuate influenza virus replication. Its analogs were subsequently investigated and twelve of them could attenuate RNP activities. One of the analogs, compound 312, impeded influenza A virus replication in Madin-Darby canine kidney cells with IC 50 of 27.0 ± 16.8 μM. In vitro interaction assays showed that compound 312 bound directly to PAC with Kd of about 40 μM. Overall, the identification of novel PAC-targeting compounds provides new ground for drug design against influenza virus in the future.
SRPK2 Mediates HBV Core Protein Phosphorylation and Capsid Assembly via Docking Interaction
Members of the serine–arginine protein kinase (SRPK) family, SRPK1 and SRPK2, phosphorylate the hepatitis B core protein (Cp) and are crucial for pregenomic RNA encapsidation during viral nucleocapsid assembly. Among them, SRPK2 exhibits higher kinase activity toward Cp. In this study, we identified Cp sites that are phosphorylated by SRPK2 and demonstrated that the kinase utilizes an SRPK-specific docking groove to interact with and regulate the phosphorylation of the C-terminal arginine rich domain of Cp. We determined that direct interaction between the docking groove of SRPK2 and unphosphorylated Cp inhibited premature viral capsid assembly in vitro , whereas the phosphorylation of the viral protein reactivated the process. Pull-down assays together with the new cryo-electron microscopy structure of the HBV capsid in complex with SRPK2 revealed that the kinases decorate the surface of the viral capsid by interacting with the C-terminal domain of Cp, underscoring the importance of the docking interaction in regulating capsid assembly and pregenome packaging. Moreover, SRPK2-knockout in HepG2 cells suppressed Cp phosphorylation, indicating that SRPK2 is an important cellular kinase for HBV life cycle.
Design of a covalent protein-protein interaction inhibitor of SRPKs to suppress angiogenesis and invasion of cancer cells
Serine–arginine (SR) proteins are splicing factors that play essential roles in both constitutive and alternative pre-mRNA splicing. Phosphorylation of their C-terminal RS domains by SR protein kinases (SRPKs) regulates their localization and diverse cellular activities. Dysregulation of phosphorylation has been implicated in many human diseases, including cancers. Here, we report the development of a covalent protein–protein interaction inhibitor, C-DBS, that targets a lysine residue within the SRPK-specific docking groove to block the interaction and phosphorylation of the prototypic SR protein SRSF1. C-DBS exhibits high specificity and conjugation efficiency both in vitro and in cellulo . This self-cell-penetrating inhibitor attenuates the phosphorylation of endogenous SR proteins and subsequently inhibits the angiogenesis, migration, and invasion of cancer cells. These findings provide a new foundation for the development of covalent SRPK inhibitors for combatting diseases such as cancer and viral infections and overcoming the resistance encountered by ATP-competitive inhibitors. The binding and phosphorylation of serine–arginine-rich (SR) proteins by SR protein kinases (SRPKs) is essential to regulate target gene expression, however, the efficient inhibition of this interaction and phosphorylation remains underexplored. Here, the authors develop a covalent inhibitor that targets the lysine residue within the SRPK-specific docking groove, to block interaction and phosphorylation of the prototypic SR protein SRSF1.
A brain-targeting lipidated peptide for neutralizing RNA-mediated toxicity in Polyglutamine Diseases
Polyglutamine (PolyQ) diseases are progressive neurodegenerative disorders caused by both protein- and RNA-mediated toxicities. We previously showed that a peptidyl inhibitor, P3, which binds directly to expanded CAG RNA can inhibit RNA-induced nucleolar stress and suppress RNA-induced neurotoxicity. Here we report a N-acetylated and C-amidated derivative of P3, P3V8, that showed a more than 20-fold increase in its affinity for expanded CAG RNA. The P3V8 peptide also more potently alleviated expanded RNA-induced cytotoxicity in vitro , and suppressed polyQ neurodegeneration in Drosophila with no observed toxic effects. Further N-palmitoylation of P3V8 (L1P3V8) not only significantly improved its cellular uptake and stability, but also facilitated its systemic exposure and brain uptake in rats via intranasal administration. Our findings demonstrate that concomitant N-acetylation, C-amidation and palmitoylation of P3 significantly improve both its bioactivity and pharmacological profile. L1P3V8 possesses drug/lead-like properties that can be further developed into a lead inhibitor for the treatment of polyQ diseases.
A Peptidylic Inhibitor for Neutralizing r(GGGGCC)exp-Associated Neurodegeneration in C9ALS-FTD
One drug, two diseases is a rare and economical therapeutic strategy that is highly desirable in the pharmaceutical industry. We previously reported a 21-amino acid peptide named beta-structured inhibitor for neurodegenerative diseases (BIND) that can effectively inhibit expanded CAG trinucleotide toxicity in polyglutamine (polyQ) diseases. Here we report that BIND also effectively inhibits GGGGCC repeat-mediated neurodegeneration in vitro and in vivo. When fused with a cell-penetrating peptide derived from the transactivator of transcription (TAT) protein of the HIV, TAT-BIND reduces cell death, formation of GGGGCC RNA foci, and levels of poly-GR, poly-GA, and poly-GP dipeptide proteins in cell models of C9ORF72-associated amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS-FTD). We showed that TAT-BIND disrupts the interaction between GGGGCC RNA and nucleolin protein, restores rRNA maturation, and inhibits mislocalization of nucleolin and B23, which eventually suppresses nucleolar stress in C9ALS-FTD. In a Drosophila model of C9ALS-FTD, TAT-BIND suppresses retinal degeneration, rescues climbing ability, and extends the lifespan of flies. In contrast, TAT-BIND has no effect on UAS-poly-glycine-arginine (poly-GR)100-expressing flies, which generate only poly-GR protein toxicity, indicating BIND ameliorates toxicity in C9ALS-FTD models via a r(GGGGCC)exp-dependent inhibitory mechanism. Our findings demonstrated that, apart from being a potential therapeutic for polyQ diseases, BIND is also a potent peptidylic inhibitor that suppresses expanded GGGGCC RNA-mediated neurodegeneration, highlighting its potential application in C9ALS-FTD treatment. [Display omitted]
Emerging roles of the neural adaptor FE65 in neurite outgrowth
Activating the intrinsic pathways for neurite outgrowth could potentially lead to axon regeneration in CNS neurons (He and Jin, 2016). [...]understanding the regulatory mechanisms of neurite outgrowth would not only advance our knowledge in brain development but also provide insights into methods of inducing neurite re-outgrowth after brain injuries and in the aftermath of neurodegenerative diseases. [...]a study shows that the selective activation of Rac1 could enhance neuronal survival and axonal regeneration while preventing dendrite degeneration in retinal ganglion cells after crush injuries. [...]our recent finding provides the first source of evidence for the aforementioned proposal as the interaction of FE65 and ELMO1 EAD relieves the ELMO1 autoinhibitory conformation and stimulates Rac1 and neurite outgrowth in primary rat cortical neurons (Li et al., 2018) [Figure 1]. [...]the LDL receptor-related protein 1 (LRP1) agonist increases neurite outgrowth in dorsal root ganglion neurons.
Assessing a peptidylic inhibitor-based therapeutic approach that simultaneously suppresses polyglutamine RNA- and protein-mediated toxicities in patient cells and Drosophila
Polyglutamine (polyQ) diseases represent a group of progressive neurodegenerative disorders that are caused by abnormal expansion of CAG triplet nucleotides in disease genes. Recent evidence indicates that not only mutant polyQ proteins, but also their corresponding mutant RNAs, contribute to the pathogenesis of polyQ diseases. Here, we describe the identification of a 13-amino-acid peptide, P3, which binds directly and preferentially to long-CAG RNA within the pathogenic range. When administered to cell and Drosophila disease models, as well as to patient-derived fibroblasts, P3 inhibited expanded-CAG-RNA-induced nucleolar stress and suppressed neurotoxicity. We further examined the combined therapeutic effect of P3 and polyQ-binding peptide 1 (QBP1), a well-characterized polyQ protein toxicity inhibitor, on neurodegeneration. When P3 and QBP1 were co-administered to disease models, both RNA and protein toxicities were effectively mitigated, resulting in a notable improvement of neurotoxicity suppression compared with the P3 and QBP1 single-treatment controls. Our findings indicate that targeting toxic RNAs and/or simultaneous targeting of toxic RNAs and their corresponding proteins could open up a new therapeutic strategy for treating polyQ degeneration.
The cellular adaptor GULP1 interacts with ATG14 to potentiate autophagy and APP processing
Autophagy is a highly conserved catabolic mechanism by which unnecessary or dysfunctional cellular components are removed. The dysregulation of autophagy has been implicated in various neurodegenerative diseases, including Alzheimer’s disease (AD). Understanding the molecular mechanism(s)/molecules that influence autophagy may provide important insights into developing therapeutic strategies against AD and other neurodegenerative disorders. Engulfment adaptor phosphotyrosine-binding domain-containing protein 1 (GULP1) is an adaptor that interacts with amyloid precursor protein (APP) to promote amyloid-β peptide production via an unidentified mechanism. Emerging evidence suggests that GULP1 has a role in autophagy. Here, we show that GULP1 is involved in autophagy through an interaction with autophagy-related 14 (ATG14), which is a regulator of autophagosome formation. GULP1 potentiated the stimulatory effect of ATG14 on autophagy by modulating class III phosphatidylinositol 3-kinase complex 1 (PI3KC3-C1) activity. The effect of GULP1 is attenuated by a GULP1 mutation (GULP1m) that disrupts the GULP1–ATG14 interaction. Conversely, PI3KC3-C1 activity is enhanced in cells expressing APP but not in those expressing an APP mutant that does not bind GULP1, which suggests a role of GULP1–APP in regulating PI3KC3-C1 activity. Notably, GULP1 facilitates the targeting of ATG14 to the endoplasmic reticulum (ER). Moreover, the levels of both ATG14 and APP are elevated in the autophagic vacuoles (AVs) of cells expressing GULP1, but not in those expressing GULP1m. APP processing is markedly enhanced in cells co-expressing GULP1 and ATG14. Hence, GULP1 alters APP processing by promoting the entry of APP into AVs. In summary, we unveil a novel role of GULP1 in enhancing the targeting of ATG14 to the ER to stimulate autophagy and, consequently, APP processing.
CAG RNAs induce DNA damage and apoptosis by silencing NUDT16 expression in polyglutamine degeneration
DNA damage plays a central role in the cellular pathogenesis of polyglutamine (polyQ) diseases, including Huntington’s disease (HD). In this study, we showed that the expression of untranslatable expanded CAG RNA per se induced the cellular DNA damage response pathway. By means of RNA sequencing (RNA-seq), we found that expression of the Nudix hydrolase 16 (NUDT16) gene was down-regulated in mutant CAG RNA-expressing cells. The loss of NUDT16 function results in a misincorporation of damaging nucleotides into DNAs and leads to DNA damage. We showed that small CAG (sCAG) RNAs, species generated from expanded CAG transcripts, hybridize with CUG-containing NUDT16 mRNA and form a CAG-CUG RNA heteroduplex, resulting in gene silencing of NUDT16 and leading to the DNA damage and cellular apoptosis. These results were further validated using expanded CAG RNA-expressing mouse primary neurons and in vivo R6/2 HD transgenic mice. Moreover, we identified a bisamidinium compound, DB213, that interacts specifically with the major groove of the CAG RNA homoduplex and disfavors the CAG-CUG heteroduplex formation. This action subsequently mitigated RNA-induced silencing complex (RISC)-dependent NUDT16 silencing in both in vitro cell and in vivo mouse disease models. After DB213 treatment, DNA damage, apoptosis, and locomotor defects were rescued in HD mice. This work establishes NUDT16 deficiency by CAG repeat RNAs as a pathogenic mechanism of polyQ diseases and as a potential therapeutic direction for HD and other polyQ diseases.